首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hypertonicity induction of melanoma antigen,a tumor-associated antigen   总被引:7,自引:0,他引:7  
  相似文献   

4.
Stone B  Schummer M  Paley PJ  Crawford M  Ford M  Urban N  Nelson BH 《Gene》2001,267(2):173-182
Most known members of the MAGE superfamily are expressed in tumors, testis and fetal tissues, which has been described as a cancer/testis or "CT" expression pattern. We have identified a novel member of this superfamily, MAGE-F1, which is expressed in all adult and fetal tissues tested. In addition to normal tissues, MAGE-F1 is expressed in many tumor types including ovarian, breast, cervical, melanoma and leukemia. MAGE-F1 is encoded on chromosome 3, identifying a sixth chromosomal location for a MAGE superfamily gene. The coding region of MAGE-F1 is contained within a single exon and includes a microsatellite repeat. Sequence analysis and expression profiles define a new class of ubiquitously expressed MAGE superfamily genes that includes MAGE-F1, MAGE-D1, MAGE-D2/JCL-1 and NDN. The finding that several MAGE genes are ubiquitously expressed suggests a role for MAGE encoded proteins in normal cell physiology. Furthermore, potential cross-reactivity to these ubiquitously expressed MAGE gene products should be considered in the design of MAGE-targeted immunotherapies for cancer.  相似文献   

5.
The MAGE (melanoma antigen) family is characterized by a large conserved domain termed MAGE homology domain. Originally identified MAGE genes encoding tumor rejection antigens are expressed only in cancers and male germ cells. Necdin, which contains the MAGE homology domain, is highly expressed in postmitotic cells such as neurons and skeletal muscle cells. The human necdin gene NDN is transcribed only from the paternal allele through genomic imprinting, and its deficiency is implicated in the pathogenesis of the neurodevelopmental disorder Prader-Willi syndrome. Although over 30 MAGE genes have been identified in humans, fruit fly (Drosophila melanogaster) has only a single MAGE gene that encodes a protein similar to necdin homologous MAGE proteins. In this study, we analyzed the spatiotemporal expression patterns of MAGE mRNA and the encoded protein during fly development. Whole-mount embryo in situ hybridization analysis revealed that MAGE mRNA was highly expressed at the syncytial blastoderm stage and in the ventral and procephalic neurogenic regions of the ectoderm during gastrulation. In contrast, MAGE expression was nearly undetectable in postmitotic neurons of the central nervous system at late embryonic stages. During postembryonic neurogenesis, MAGE was highly expressed in neural stem cells (neuroblasts) and their progeny (ganglion mother cells and postmitotic neurons) at larval and pupal stages. MAGE was also expressed in postmitotic neurons including mushroom body neurons and retinal photoreceptors in adulthood. These results indicate that MAGE expression lasts throughout the postembryonic neurogenesis in Drosophila.  相似文献   

6.
We reported previously identification of the human MAGE1 gene, which encodes an antigen recognized on human melanoma MZ2-MEL by autologous cytolytic T lymphocytes. In addition to MAGE1, melanoma MZ2-MEL expresses several closely related genes, one of which has been named MAGE2. The complete MAGE2 sequence was obtained and it comprises 3 exons homologous to those of MAGE1 and an additional exon homologous to a region of the first MAGE1 intron. Like the open reading frame of MAGE1, that of MAGE2 is entirely encoded by the last exon. The MAGE1 and MAGE2 sequences of this exon show 82% identity and the putative proteins show 67% identity. The MAGE2 gene is expressed in a higher proportion of melanoma tumors than MAGE1. It is also expressed in many small-cell lung carcinomas and other lung tumors, laryngeal tumors, and sarcomas. No MAGE1 and MAGE2 gene expression was found in a large panel of healthy adult tissues, with the exception of testis.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number L18920.  相似文献   

7.
Direct selection of DNA sequences conserved between species.   总被引:3,自引:1,他引:2       下载免费PDF全文
An essential requirement in the analysis of genomes is the identification of functionally important sequence elements, which are often evolutionarily conserved. We describe here the development of a novel procedure for the selective isolation of conserved sequences which is based on hybridization of PCR-amplifiable DNA fragments from the whole genome of one species to biotinylated DNA from a genomic region of another species. The interspecies DNA hybrids are immobilized and the PCR-amplifiable DNA fragments are eluted, amplified and after further hybridization-amplification rounds cloned. This method was used for the generation of sublibraries of conserved sequences from mouse and pig DNA from regions corresponding to cosmids from the human Xq28 region. Mouse and pig homologs of sequences containing exons of known human genes, as well as exons from novel genes have been identified.  相似文献   

8.
9.
MAGE genes are expressed by many human tumors of different histological types but not by normal cells, except for male germline cells. The Ags encoded by MAGE genes and recognized by T cells are therefore strictly tumor-specific. Clinical trials involving therapeutic vaccination of cancer patients with MAGE antigenic peptides or proteins are in progress. To increase the range of patients eligible for therapy with peptides, it is important to identify additional MAGE epitopes recognized by CTL. Candidate peptides known to bind to a given HLA have been used to stimulate T lymphocytes in vitro. In some instances, CTL clones directed against these synthetic peptides have been obtained, but these clones often failed to recognize tumor cells expressing the relevant gene. Therefore, we designed a method to identify CTL epitopes that selects naturally processed peptides. Monocyte-derived dendritic cells infected with a recombinant canarypoxvirus (ALVAC) containing the entire MAGE-A1 gene were used to stimulate CD8+ T lymphocytes from the blood of individuals without cancer. Responder cell microcultures that specifically lysed autologous cells expressing MAGE-A1 were cloned using autologous stimulator cells either transduced with a retrovirus coding for MAGE-A1 or infected with recombinant Yersinia-MAGE-A1 bacteria. The CTL clones were tested for their ability to lyse autologous cells loaded with each of a set of overlapping MAGE-A1 peptides. This strategy led to the identification of five new MAGE-A1 epitopes recognized by CTL clones on HLA-A3, -A28, -B53, -Cw2, and -Cw3 molecules. All of these CTL clones recognized target cells expressing gene MAGE-A1.  相似文献   

10.
From melanoma patient LB1751, cytolytic T lymphocytes (CTL) were generated that lysed specifically autologous tumor cells. To establish whether these CTL recognized one of the Ags that had previously been defined, a CTL clone was stimulated with cells expressing various MAGE genes. It produced TNF upon stimulation with target cells expressing MAGE-A10. The Ag was found to be nonapeptide GLYDGMEHL (codons 254-262), which is presented by HLA-A2.1. This is the first report on the generation of anti-MAGE CTL by autologous mixed lymphocyte-tumor cell culture (MLTC) from a melanoma patient other than patient MZ2, from whom the first MAGE gene was identified. MAGE genes are expressed in many tumors but not by normal tissues except male germline cells and placenta, which do not express HLA molecules. Therefore, the identification of an antigenic peptide derived from MAGE-A10 adds to the repertoire of tumor-specific shared Ags available for anti-tumoral vaccination trials.  相似文献   

11.
Patients with an intact SRY gene and duplications of portions of Xp21 develop as phenotypic females. We have recently mapped this sex reversal locus, DSS, to a 160-kb region of Xp21 that includes the adrenal hypoplasia congenita locus. To clone the gene(s) underlying DSS and AHC, we isolated expressed sequences quences from the region. Here we describe the characterization of two related genes. DAM10 and DAM6, expressed in adult testis and lung tumors. The predicted DAM10 and DAM6 proteins are 66% identical and are both highly similar to the MAGE family of tumor-associated antigens and to mouse necdin. Genes belonging to the MAGE superfamily, DAMs, MAGEs, and necdin, are likely to have originated from a common ancestor and to be subject to an unusually rapid evolution. The tumor-restricted expression of DAM proteins and their structural similarity to MAGE genes suggest that DAM peptides may be targets for active immunotherapy in lung cancer patients.  相似文献   

12.
MAGE-1, which was originally identified by reacting with cytolytic T lymphocytes derived from the blood of melanoma patients, is a member of a gene family consisting of 17 structurally related genes. The MAGE genes are expressed only in the testis among normal tissues and in a number of human tumors of various histological types. Murine MAGE (also called SMAGE or Mage) genes were found in a study aimed at detecting mouse genes homologous to human MAGE genes. However, the biological functions of MAGE and Mage are currently unknown. To understand the biological functions of Mage, in the present study a recombinant SMAGE2 (Mage-b2) protein of 43 kDa was produced and monoclonal antibodies reactive with Mage-b2 protein were generated. One monoclonal antibody, smpG4A, specifically recognized a 43 kDa protein in lysates of Mage-b2 mRNA-positive sarcoma cells and of the testis. Immunohistochemistry showed that Mage-b2 is located in the nucleus of Mage-b2 mRNA-positive sarcoma cells. These results should contribute to understanding the biological functions of Mage.  相似文献   

13.
MAGE-1, which was originally identified by reacting with cytolytic T lymphocytes derived from the blood of melanoma patients, is a member of a gene family consisting of 17 structurally related genes. The MAGE genes are expressed only in the testis among normal tissues and in a number of human tumors of various histological types. Murine MAGE (also called SMAGE or Mage) genes were found in a study aimed at detecting mouse genes homologous to human MAGE genes. However, the biological functions of MAGE and Mage are currently unknown. To understand the biological functions of Mage, in the present study a recombinant SMAGE2 (Mage-b2) protein of 43 kDa was produced and monoclonal antibodies reactive with Mage-b2 protein were generated. One monoclonal antibody, smpG4A, specifically recognized a 43 kDa protein in lysates of Mage-b2 mRNA-positive sarcoma cells and of the testis. Immunohistochemistry showed that Mage-b2 is located in the nucleus of Mage-b2 mRNA-positive sarcoma cells. These results should contribute to understanding the biological functions of Mage.  相似文献   

14.
Antigens encoded by MAGE genes are of particular interest for cancer immunotherapy because they are tumor specific and shared by tumors of different histological types. Several clinical trials are in progress with MAGE peptides, proteins, recombinant poxviruses, and dendritic cells (DC) pulsed with peptides or proteins. The use of gene-modified DC would offer the major advantage of a long-lasting expression of the transgene and a large array of antigenic peptides that fit into the different HLA molecules of the patient. In this study, we tested the ability of gene-modified DC to prime rare Ag-specific T cells, and we identified a new antigenic peptide of clinical interest. CD8(+) T lymphocytes from an individual without cancer were stimulated with monocyte-derived DC, which were infected with a second-generation lentiviral vector encoding MAGE-3. A CTL clone was isolated that recognized peptide EGDCAPEEK presented by HLA-Cw7 molecules, which are expressed by >40% of Caucasians. Interestingly, this new tumor-specific antigenic peptide corresponds to position 212-220 of MAGE-2, -3, -6, and -12. HLA-Cw7 tumor cell lines expressing one of these MAGE genes were lysed by the CTL, indicating that the peptide is efficiently processed in tumor cells and can therefore be used as target for antitumoral vaccination. The risk of tumor escape due to appearance of Ag-loss variants should be reduced by the fact that the peptide is encoded by several MAGE genes.  相似文献   

15.
16.
The melanoma antigen (MAGE) family proteins are well known as tumor-specific antigens and comprise more than 60 genes, which share a conserved MAGE homology domain (MHD). Type I MAGEs are highly expressed cancer antigens, and they play an important role in tumorigenesis and cancer cell survival. Recently, several MAGE proteins were identified to interact with RING domain proteins, including a sub-family of E3 ubiquitin ligases. The binding mode between MAGEs and RING proteins was investigated and one important structure of these MAGE-RING complexes was solved: the MAGE-G1-NSE1 complex. Structural and biochemical studies indicated that MAGE proteins could adjust the E3 ubiquitin ligase activity of its cognate RING partner both in vitro and in vivo. However, the underlying mechanism was not fully understood. Here, we review these exciting advances in the studies on MAGE family, suggest potential mechanisms by which MAGEs activate the E3 activity of their binding RING proteins and highlight the anticancer potential of this family proteins.  相似文献   

17.
18.
The murine and human genes for the L1 neural adhesion molecule were shown to lie on conserved regions of the X chromosome to which genes responsible for several neuromuscular diseases have been mapped and which are adjacent to the fragile site (FRAXA) associated with mental retardation. By pulsed-field gel mapping we have demonstrated physical linkage between the L1 gene and other genes located in Xq28: L1 lies between the eye pigment RCP, GCP locus and the glucose-6-phosphate dehydrogenase (G6PD) gene. This location is compatible with the implication of the L1 molecule in one of the X-linked neuromuscular diseases mapped to this region.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号