首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptotic response of keratinocytes to UVB irradiation has physiological significance on photocarcinogenesis. Here, we show that the sustained release of Smac/DIABLO from mitochondria is an important event for the onset of apoptosis in keratinocytes exposed to UVB irradiation. In human keratinocyte HaCaT cells, UVB irradiation at 500 J/m2, but not at 150 J/m2, induces apoptosis. Significant activations of caspases-9 and -3, and slight activation of caspase-7 were observed only in 500 J/m2 UVB irradiated HaCaT cells. Correspondingly, the cleavage of PARP, a substrate of caspases-3 and -7, was detected in cells irradiated at 500 J/m2 UVB, but not at 150 J/m2. However, with both 150 and 500 J/m2 UVB irradiation, cytochrome c, an activator of caspase-9 via the formation of apoptosome, was released from mitochondria to the cytosol at the same extent. In contrast, significant amounts of Smac/DIABLO are released from mitochondria to the cytosol only with 500 J/m2 UVB irradiation, and that the level of XIAP is decreased. These results suggest that the extent of Smac/DIABLO efflux from mitochondria is a determinant whether a cell will undergo apoptosis or survival.  相似文献   

2.
Induction of DNA damage by solar UV radiation is a key event in the development of skin cancers. Bipyrimidine photoproducts, including cyclobutane pyrimidine dimers (CPDs), (6-4) photoproducts (64 PPs) and their Dewar valence isomers, have been identified as major UV-induced DNA lesions. In order to identify the predominant and most persistent lesions, we studied the repair of the three types of photolesions in primary cultures of human keratinocytes. Specific and quantitative data were obtained using HPLC associated with tandem mass spectrometry. As shown in other cell types, 64 PPs are removed from UVB-irradiated keratinocytes much more efficiently than CPDs. In contrast, CPDs are still present in high amounts when cells recover their proliferation capacities after cell cycle arrest and elimination of a part of the population by apoptosis. The predominance of CPDs is still maintained when keratinocytes are exposed to a combination of UVB and UVA. Under these conditions, 64 PPs are converted into their Dewar valence isomers that are as efficiently repaired as their (6-4) precursors. Exposure of cells to pure UVA radiation generates thymine cyclobutane dimers that are slightly less efficiently repaired than CPDs produced upon UVB irradiation. Altogether, our results show that CPDs are the most frequent and the less efficiently repaired bipyrimidine photoproducts irrespectively of the applied UV treatment.  相似文献   

3.
The mutagenic effects of ultraviolet and solar irradiation are thought to be due to the formation of DNA photoproducts, most notably cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). Experimental systems for determining the levels and sequence dependence of photoproduct formation in DNA have often used high doses of short-wave (UVC) irradiation. We have re-assessed this issue by using DNA sequencing technologies and different doses of UVC as well as more physiologically relevant doses of solar irradiation emitted from a solar UV simulator. It has been questioned whether hot alkali treatment can detect (6-4)PPs at all sequence positions. With high UVC doses, the sequence distribution of (6-4)PPs was virtually identical when hot alkali or UV damage endonuclease (UVDE) were used for detection, which appears to validate both methods. The (6-4)PPs form at 5'-TpC and 5'CpC sequences but very low levels are seen at all other dipyrimidines including 5'-TpT. Contrary to expectation, we find that (6-4) photoproducts form at almost undetectable levels under conditions of irradiation for up to five hours with the solar UV simulator. The same treatment produces high levels of CPDs. In addition, DNA glycosylases, which recognize oxidized and ring-opened bases, did not produce significant cleavage of sunlight-irradiated DNA. From these data, we conclude that cyclobutane pyrimidine dimers are at least 20 to 40 times more frequent than any other DNA photoproduct when DNA or cells are irradiated with simulated sunlight.  相似文献   

4.
5.
The mechanism of cell death induced by the different waveband regions of ultraviolet radiation (UVR), i.e., UVA1 (340-400 nm), UVB (290-320 nm) and UVC (200-290 nm) was investigated, using equilethal doses (90% reproductive death) on L5178Y-R murine lymphoma cells. To distinguish between necrosis and apoptosis, the following endpoints were monitored over time using flow cytometry and transmission electron microscopy: percentage of remaining cells, membrane permeabilized cells, dead cells, apoptotic cells, and ultrastructural changes. All waveband regions of UVR were found to cause apoptosis as opposed to necrosis. However, UVA1-induced immediate (0-4 h) apoptosis, while UVB- or UVC-induced delayed apoptosis (<34 h). Moreover, the membrane permeability changes that only result from exposure to UVA1 radiation, especially to red blood cells, suggests that the immediate apoptotic mechanism involves membrane damage. Therefore, the results suggest that there are three death mechanisms available to one cell type: necrosis, immediate apoptosis, and delayed apoptosis (or programmed cell death).  相似文献   

6.
Ultraviolet (UV) exposure induces an up-regulation of melanocortin-1 receptor (MC1R) expression in human skin and the alpha-melanocyte-stimulating hormone (alpha-MSH) may reduce UVB-induced DNA damage in normal human melanocytes. Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of DNA lesions in UVB-irradiated HaCaT cells stably transfected with the wild type MC1R gene (HaCaT-MC1R). Similar levels of 8 bipyrimidine photoproducts including cyclobutane pyrimidine dimers (CPDs) (T<>T, T<>C, C<>T), (6-4) photoproducts ((6-4)PPs) (TT-(6-4)PPs, TC-(6-4)PPs) and their Dewar valence isomers together with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were found to be generated in both non-transfected and HaCaT-MC1R cells after UVB exposure. Time-course studies of DNA photoproduct yields indicated that the DNA repair ability depended upon radiation doses. It was shown that (6-4)PPs were removed from the DNA of UVB-irradiated cells much more efficiently than CPDs. The repair efficiency of 8-oxodGuo, CPDs and (6-4)PPs was relatively similar in both cell lines and was not modified by stimulation with alpha-MSH before UVB-exposure. In conclusion, cell surface-enforced expression of MC1Rs on HaCaT keratinocytes and alpha-MSH stimulation do not affect the formation of UVB-induced DNA photoproducts and their subsequent repair.  相似文献   

7.
Wang Y  Gross ML  Taylor JS 《Biochemistry》2001,40(39):11785-11793
Recently, it was reported that TATA-binding protein (TBP) enhances (6-4) photoproduct formation in a TATA box under UVC irradiation [Aboussekhra and Thoma (1999) EMBO J. 18, 433-443]. The conclusions of that study were based on an indirect enzymatic assay that was not specific for (6-4) photoproducts. Herein we report the use of a recently developed coupled enzymatic digestion/mass spectrometry assay [Wang et al. (1999) Chem. Res. Toxicol. 12, 1077-1082] to identify unambiguously and quantify the photoproducts formed in a TATA box-containing dodecamer duplex sequence in the presence or absence of TBP binding. Exposure of the adenovirus major late promoter TATA box to a high dose of UVC irradiation in the absence of the C-terminal domain of yeast TBP leads to predominant formation of the cis-syn dimer within the T(4) tract, whereas exposure in the presence of TBP leads to almost exclusive formation of the (6-4) photoproduct. In contrast, the (6-4) product is not detected at high doses of UVB irradiation in the absence of TBP but is detected in the presence of TBP, although the cis-syn product predominates. When the products of UVB irradiation were subsequently exposed to a high dose of UVC irradiation in the presence of TBP, the (6-4) photoproduct again becomes nearly the exclusive photoproduct, indicating that the cis-syn dimer is being reversed to TT by UVC light. Both cis-syn and (6-4) photoproducts are formed in approximately equal amounts upon irradiation with small doses of UVC in the presence of TBP, but the fraction of (6-4) photoproduct increases with dose. Through the use of a TATA box containing a site-specifically deuterated thymine, it was found that (6-4) photoproducts formed most selectively at the second and third positions of the T(4) tract upon either UVB or UVC irradiation in the presence of TBP. By using the same substrate, it was found that UVC-induced TA formation was inhibited by TBP binding and that TA formation was greatest at the 5' end of the TATA sequence.  相似文献   

8.
Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) are the two main classes of mutagenic DNA damages induced by UVB radiation. Numerous studies have been devoted so far to their formation and repair in human cells and skin. However, the biochemical methods used often lack the specificity that would allow the individual study of each of the four CPDs and 6-4PPs produced at TT, TC, CT and CC dinucleotides. In the present work, we applied an HPLC-mass spectrometry assay to study the formation and repair of CPDs and 6-4PPs photoproducts in primary cultures of human keratinocytes and fibroblasts as well as in whole human skin. We first observed that the yield of dimeric lesions was slightly higher in fibroblasts than in keratinocytes. In contrast, the rate of global repair was higher in the last cell type. Moreover, removal of DNA photoproducts in skin biopsies was found to be slower than in both cultured skin cells. In agreement with previous works, the repair of 6-4PPs was found to be more efficient than that of CPDs in the three types of samples, with no observed difference between the removal of the TT and TC derivatives. In contrast, a significant influence of the nature of the two modified pyrimidines was observed on the repair rate of CPDs. The decreasing order of removal efficiency was the following: C<>T>C<>C>T<>C>T<>T. These data, together with the known intrinsic mutational properties of the lesions, would support the reported UV mutation spectra. A noticeable exception concerns CC dinucleotides that are mutational hotspots with an UV-specific CC to TT tandem mutation, although related bipyrimidine photoproducts are produced in low yields and efficiently repaired.  相似文献   

9.
In vivo formation and repair of the major UV-induced DNA photoproducts, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4 PPs), have been examined at the gene and nucleotide level in Escherichia coli. Each type of DNA photoproduct has individually been studied using photoreactivation and two newly developed assays; the multiplex QPCR assay for damage detection at the gene level and the reiterative primer extension (PE) assay for damage detection at the nucleotide level. In the E. coli lacI and lacZ genes, CPDs and 6-4 PPs form in a 2:1 ratio, respectively, during UV irradiation. Repair of 6-4 PPs is more efficient than repair of CPDs since, on the average, 42% of 6-4 PPs are repaired in both genes in the first 40 min following 200 J/m2 UV irradiation, while 1% of CPDs are repaired. The location, relative frequency of formation, and efficiency of repair of each type of photoproduct was examined in the first 52 codons of the E. coli lacI gene at the nucleotide level. Hotspots of formation were found for each type of lesion. Most photoproducts are at sites where both CPDs and 6-4 PPs are formed. Allowing 40 min of recovery following 200 J/m2 shows that in vivo repair of 6-4 PPs is about fourfold more efficient than the repair of CPDs. Comparison of the lesion-specific photoproduct distribution of the lacI gene with a UV-induced mutation spectrum from wild-type cells shows that most mutational hotspots are correlated with sites of a majority of CPD formation. However, 6-4 PPs are also formed at some of these sites with relatively high frequency. This information, taken together with the observation that 6-4 PPs are repaired faster than CPDs, suggest that the cause of mutagenic hotspots in wild-type E. coli is inefficient repair of CPDs.  相似文献   

10.
11.
The most prevalent DNA lesions induced by UVB are the cyclobutane pyrimidine dimers (CPDs) and the pyrimidine (6-4) pyrimidone photoproducts ((6-4)PPs). It has been a long standing controversy as to which of these photoproduct is responsible for mutations in mammalian cells. Here we have introduced photoproduct-specific DNA photolyases into a mouse cell line carrying the transgenic mutation reporter genes lacI and cII. Exposure of the photolyase-expressing cell lines to photoreactivating light resulted in almost complete repair of either CPDs or (6-4)PPs within less than 3 h. The mutations produced by the remaining, nonrepaired photoproducts were scored. The mutant frequency in the cII gene after photoreactivation by CPD photolyase was reduced from 127 x 10(-5) to 34 x 10(-5) (background, 8-10 x 10(-5)). Photoreactivation with (6-4) photolyase did not lower the mutant frequency appreciably. In the lacI gene the mutant frequency after photoreactivation repair of CPDs was reduced from 148 x 10(-5) to 28 x 10(-5) (background, 6-10 x 10(-5)). Mutation spectra obtained with and without photoreactivation by CPD photolyase indicated that the remaining mutations were derived from background mutations, unrepaired CPDs, and other DNA photopoducts including perhaps a small contribution from (6-4)PPs. We conclude that CPDs are responsible for at least 80% of the UVB-induced mutations in this mammalian cell model.  相似文献   

12.
13.
Previously we compared the mutational specificities of polychromatic UVB (285-320 nm) and UVC (254 nm) light in the SUP4-o gene of the yeast Saccharomyces cerevisiae. Striking similarities in the types and distributions of induced SUP4-o mutations were consistent with roles for cyclobutane dimers and pyrimidine(6-4)pyrimidone photoproducts in mutation induction by UVB. To assess the relative importance of cyclobutane dimers, we have now examined the effect of photoreactivation (PR), which specifically reverses these lesions, on UVB and UVC induction of SUP4-o mutations. PR reduced the frequencies of both UVB and UVC mutagenesis by approximately 75%. Collections of 138 and 158 SUP4-o mutants induced by treatment with UVB plus PR or UVC plus PR, respectively, were characterized by DNA sequencing and the results were compared to those for 208 UVB and 211 UVC-induced mutants analyzed earlier. PR decreased the frequency of UVB-induced G.C----A.T transitions by 85%, diminished the substitution frequencies at individual sites by 64% on average, and reduced the mutation frequencies at the five UVB hotspots by 87%. A more detailed examination revealed that the transition frequencies at the 3' base of 5'-TC-3' and 5'-CC-3' sequences were decreased by 90% and 72%, respectively. Finally, PR appeared to occur to the same extent on both the transcribed and non-transcribed strands of SUP4-o. Similar results were obtained for PR following UVC irradiation. Our findings indicate that cyclobutane dimers are responsible for the majority of UVB mutagenesis in yeast.  相似文献   

14.
The DNA in spores of Bacillus species exhibits a relatively novel photochemistry, as 5-thyminyl-5,6-dihydrothymine (spore photoproduct (SP)) is by far the major UV photoproduct whereas cyclobutane dimers (CPDs) and (6-4) photoproducts (6-4PPs) are the major photoproducts in growing cells. Dehydration and more importantly complexation of DNA by alpha/beta-type small, acid-soluble spore proteins (SASP) have been shown to partly explain the photochemistry of spore DNA. The large amount ( approximately 10% of dry weight) of the spore's dipicolinic acid (DPA) also has been shown to play a role in spore DNA photochemistry. In the present work we showed by exposing spores of various strains of B. subtilis to UVC radiation that DPA photosensitizes spore DNA to damage and favors the formation of SP. The same result was obtained in either the presence or absence of the alpha/beta-type SASP that saturate the spore chromosome. Addition of DPA to dry films of isolated DNA or to frozen solutions of thymidine also led to a higher yield of SP and increased ratio of CPDs to 6-4PPs; DPA also significantly increased the yield of CPDs in thymidine exposed to UVC in liquid solution. These observations strongly support a triplet energy transfer between excited DPA and thymine residues. We further conclude that the combined effects of alpha/beta-type SASP and DPA explain the novel photochemistry of DNA in spores of Bacillus species.  相似文献   

15.
Inappropriate apoptosis results in the epidermal hyperplasia as in psoriasis and UVB irradiation has been successfully used to treat this kind of skin disorders. Previously, we reported that the novel phytosphingosine derivative, tetraacetyl phytosphingosine (TAPS) induced apoptosis in HaCaT cells. This study examined the effect of UVB irradiation and/or TAPS on the induction of apoptosis in HaCaT. 10 mJ/cm2 of UVB irradiation or 10 microM of TAPS alone exhibited weak cytotoxicity but co-treatment of UVB and TAPS synergistically enhanced the cytotoxicity and apoptosis in HaCaT. The cells treated with UVB and TAPS showed much higher levels of cleaved caspase-3, -8, -9 and Bax than with UVB or TAPS alone, whereas Bcl-2 level was decreased by co-administration of UVB and TAPS. In hairless mice, co-treatment of UVB and TAPS synergistically increased apoptosis, as shown in the HaCaT co-treated with UVB and TAPS. Furthermore, UVB irradiation caused an increase of apoptotic cells in the epidermis and the TAPS-treated mice showed an increase of apoptotic cells in the dermis as well as in the epidermis. These results suggest that the TAPS co-treatment synergistically increases the level of UVB-induced apoptosis via caspase activation by regulating the level of pro-apoptotic Bax and anti-apoptotic Bcl-2.  相似文献   

16.
Both phosphatidylinositol 3-kinase (PI3K)/Akt and NF-kappaB pathways function to promote cellular survival following stress. Recent evidence indicates that the anti-apoptotic activity of these two pathways may be functionally dependent. Ultraviolet (UV) irradiation causes oxidative stress, which can lead to apoptotic cell death. Human skin cells (keratinocytes) are commonly exposed to UV irradiation from the sun. We have investigated activation of the PI3K/Akt and NF-kappaB pathways and their roles in protecting human keratinocytes (KCs) from UV irradiation-induced apoptosis. This activation of PI3K preceded increased levels (3-fold) of active/phosphorylated Akt. UV (50 mJ/cm2 from UVB source) irradiation caused rapid recruitment of PI3K to the epidermal growth factor receptor (EGFR). Pretreatment of KCs with EGFR inhibitor PD169540 abolished UV-induced Akt activation/phosphorylation, as did the PI3K inhibitors LY294002 or wortmannin. This inhibition of Akt activation was associated with a 3-4-fold increase of UV-induced apoptosis, as measured by flow cytometry and DNA fragmentation ELISA. In contrast to Akt, UV irradiation did not detectably increase nuclear localization of NF-kappaB, indicating that it was not strongly activated. Consistent with this observation, interference with NF-kappaB activation by adenovirus-mediated overexpression of dominant negative IKK-beta or IkappaB-alpha did not increase UV-induced apoptosis. However, adenovirus-mediated overexpression of constitutively active Akt completely blocked UV-induced apoptosis observed with PI3K inhibition by LY294002, whereas adenovirus mediated overexpression of dominant negative Akt increased UV-induced apoptosis by 2-fold. Inhibition of UV-induced activation of Akt increased release of mitochondrial cytochrome c 3.5-fold, and caused appearance of active forms of caspase-9, caspase-8, and caspase-3. Constitutively active Akt abolished UV-induced cytochrome c release and activation of caspases-9, -8, and -3. These data demonstrate that PI3K/Akt is essential for protecting human KCs against UV-induced apoptosis, whereas NF-kappaB pathway provides little, if any, protective role.  相似文献   

17.
Aberrant apoptosis has been associated with the development and therapeutic resistance of cancer. Recent studies suggest that caspase deficiency/downregulation is frequently detected in different cancers. We have previously shown that caspase-3 reconstitution significantly sensitized MCF-7 cells to doxorubicin and etoposide. In contrast to the well established role of caspase-3 as an effector caspase, the focus of this study is to delineate caspase-3 induced feedback activation of the apical caspases-2, -8, -9 and -10A in doxorubicin and TNF-α induced apoptosis. Using cell-free systems we show that caspases-9 and 2 are the most sensitive, caspase-8 is less sensitive and caspase-10A is the least sensitive to caspase-3 mediated-cleavage. When apoptosis is induced by doxorubicin or TNF-α in an intact cell model, cleavage of caspases-8 and -9, but not caspase-2, was markedly enhanced by caspase-3. Caspase-3 mediated-feedback and activation of caspase-8 and -9 in MCF-7/C3 cells is further supported by an increase in the cleavage of caspase-8 and 9 substrates and cytochrome c release. These data indicate that, in addition to its function as an effector caspase, caspase-3 plays an important role in maximizing the activation of apical caspases and crosstalk between the two major apoptotic pathways. The significant impact of caspase-3 on both effector and apical caspases suggests that modulation of caspase-3 activity would be a useful approach to overcome drug resistance in clinical oncology. XiaoHe Yang: This work was supported in part by the Career Development Award DAMD17-99-1-9180 from Department of Defense to X.H.Y.  相似文献   

18.
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.  相似文献   

19.
Mutations of the Xpc gene cause a deficiency in global genome repair, a subpathway of nucleotide excision repair (NER), in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of an Xpc null mutation (Xpc-/-) on damage induction, repair and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpc-/- and wild-type mice. CPDs were not significantly removed in either of the mouse genotypes by 12h after irradiation, whereas removal of 64PPs was observed in the wild-type. Irradiation with 300 and 400J/m2 UVB increased the lacZ mutant frequency in the Xpc-/- epidermis to at least twice as high as in the wild-type. Ninety-nine lacZ mutants isolated from the UVB-exposed epidermis of Xpc(-/-)mice were analyzed and compared with mutant sequences from irradiated wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in the dominance of C-->T transitions at dipyrimidine sites; however, Xpc-/- mice had a higher frequency of two-base tandem substitutions, including CC-->TT mutations, three-base tandem substitutions and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We concluded that the triplet mutation is a UV-specific mutation that preferably occurs in NER deficient genetic backgrounds.  相似文献   

20.
Requirement of ATM in UVA-induced signaling and apoptosis.   总被引:10,自引:0,他引:10  
Solar UVA, but not UVC, reaches the earth's surface and therefore is an important etiological factor for the induction of human skin cancer. ATM kinase is an important regulator of cell survival and cell cycle checkpoints. Here, we observe that UVA, unlike UVC, triggers ATM kinase activity, and the activation may occur through reactive oxygen species produced after irradiation of cells with UVA. We also show that ATM activation is involved in the apoptotic response to UVA but not UVC. Furthermore, we provide evidence that ATM-dependent p53 and c-Jun N-terminal kinase (JNK) pathways are linked to UVA-induced apoptosis. On the other hand, UVC-induced apoptosis occurs through ATR-dependent p53 phosphorylation as well as the JNK pathway. Therefore, these results suggest that ATM, like p53, is involved in the UVA-induced apoptosis to suppress carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号