首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
水稻和拟南芥中几丁质酶的分析   总被引:3,自引:0,他引:3  
几丁质酶(EC3.2.1.14)是一种降解几丁质的糖苷酶,广泛存在于各种生物体中,并在植物中对病原真菌起重要抗性作用。首先通过BLAST在GenBank中对其同源性进行搜索,用SMART分析其结构。基于水稻和拟南芥的基因组注释,借助4个生物学软件(SignalP3.0,TMHMM2.0,TargetP1.1andbig—PiPredictor),分析了水稻所有37条和拟南芥所有24条几丁质酶序列,发现有些几丁质酶都分泌到细胞外,有些定位于液泡中,水稻中仅25条和拟南芥中仅16条几丁质酶序列有信号肽,这些信号肽的平均长度为24.8aa。利用ClustalX和MEGA3.1两个生物软件分析了59条几丁质酶序列和25条标准几丁质酶的系统发育关系,这些几丁质酶可分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ和Ⅵ等6大类。这种聚类结果与几丁质酶传统分为7类有些差异。通过对6大类中各个氨基酸残基的分析,发现丙氨酸、甘氨酸、丝氨酸和亮氨酸的使用频率在每类中都非常高,而蛋氨酸、组氨酸、色氨酸和半胱氨酸均低于20%。各大类中彼此之间的某些氨基酸使用频率明显不同,Ⅰ-Ⅵ分别富含丙氨酸、缬氨酸、亮氨酸、半胱氨酸、丝氨酸和赖氨酸。  相似文献   

2.
3.
In higher plants, circadian rhythms are highly relevant to a wide range of biological processes. To such circadian rhythms, the clock (oscillator) is central, and recent intensive studies on the model higher plant Arabidopsis thaliana have begun to shed light on the molecular mechanisms underlying the functions of the central clock. Such representative clock-associated genes of A. thaliana are the homologous CCA1 and LHY genes, and five PRR genes that belong to a small family of pseudo-response regulators including TOC1. Others are GI, ZTL, ELF3, ELF4, LUX/PCL1, etc. In this context, a simple question arose as to whether or not the molecular picture of the model Arabidopsis clock is conserved in other higher plants. Here we made an effort to answer the question with special reference to Oryza sativa, providing experimental evidence that this model monocot also has a set of highly conserved clock-associated genes, such as those designated as OsCCA1, OsPRR-series including OsTOC1/OsPRR1, OsZTLs, OsPCL1 as well as OsGI. These results will provide us with insight into the general roles of plant circadian clocks, such as those for the photoperiodic control of flowering time that has a strong impact on the reproduction and yield in many higher plants.  相似文献   

4.
5.
To get insights into the functions of metallothionein (MT) in plant response to multiple stresses, expressions of 10 rice MT genes (OsMTs) and 7 Arabidopsis MT genes (AtMTs) were comprehensively analyzed under combined heavy metal and salt stress. OsMT1a, OsMT1b, OsMT1c, OsMT1g, and OsMT2a were increased by different heavy metals. Notably, ABA remarkably increased OsMT4 up to 80-fold. Combined salt and heavy metals (Cd, Pb, Cu) synergistically increased OsMT1a, OsMT1c, and OsMT1g, whereas combined salt and H2O2 or ABA synergistically increased OsMT1a and OsMT4. Heavy metals decreased AtMT1c, AtMT2b, and AtMT3 but cold or ABA increased AtMT1a, AtMT1c, and AtMT2a. AtMT4a was markedly increased by salt stress. Combined salt and other stresses (Pb, Cd, H2O2) synergistically increased AtMT4a. Taken together, these findings suggest that MTs in monocot and dicot respond differently to combined stresses, which provides a valuable basis to further determine the roles of MTs in broad stress tolerance.  相似文献   

6.
7.
DOUBLE-STRANDED RNA BINDING (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets.1 Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNAs.  相似文献   

8.
RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs.  相似文献   

9.
Zhang Y  Jiang WK  Gao LZ 《PloS one》2011,6(12):e28073
The origin and evolution of microRNA (miRNA) genes, which are of significance in tuning and buffering gene expressions in a number of critical cellular processes, have long attracted evolutionary biologists. However, genome-wide perspectives on their origins, potential mechanisms of their de novo generation and subsequent evolution remain largely unsolved in flowering plants. Here, genome-wide analyses of Oryza sativa and Arabidopsis thaliana revealed apparently divergent patterns of miRNA gene origins. A large proportion of miRNA genes in O. sativa were TE-related and MITE-related miRNAs in particular, whereas the fraction of these miRNA genes much decreased in A. thaliana. Our results show that the majority of TE-related and pseudogene-related miRNA genes have originated through inverted duplication instead of segmental or tandem duplication events. Based on the presented findings, we hypothesize and illustrate the four likely molecular mechanisms to de novo generate novel miRNA genes from TEs and pseudogenes. Our rice genome analysis demonstrates that non-MITEs and MITEs mediated inverted duplications have played different roles in de novo generating miRNA genes. It is confirmed that the previously proposed inverted duplication model may give explanations for non-MITEs mediated duplication events. However, many other miRNA genes, known from the earlier proposed model, were rather arisen from MITE transpositions into target genes to yield binding sites. We further investigated evolutionary processes spawned from de novo generated to maturely-formed miRNA genes and their regulatory systems. We found that miRNAs increase the tunability of some gene regulatory systems with low gene copy numbers. The results also suggest that gene balance effects may have largely contributed to the evolution of miRNA regulatory systems.  相似文献   

10.
11.
12.
13.
Calcium-dependent protein kinases (CDPKs) belong to a unique family of enzymes containing a single polypeptide chain with a kinase domain at the amino terminus and a putative calcium-binding EF hands structure at the carboxyl terminus. From Arabidopsis thaliana, we have cloned three distinct cDNA sequences encoding CDPKs, which were designated as atcdpk6, atcdpk9 and atcdpk19. The full-length cDNA sequences for atcdpk6, atcdpk9 and atcdpk19 encode proteins with a molecular weight of 59343, 55376 and 59947, respectively. Recombinant atCDPK6 and atCDPK9 proteins were fully active as kinases whose activities were induced by Ca2+. Biochemical studies suggested the presence of an autoinhibitory domain in the junction between the kinase domain and the EF hands structure. Serial deletion of the four EF hands of atCDPK6 demonstrated that the integrity of the four EF hands was crucial to the Ca2+ response. All the three atcdpk genes were ubiquitously expressed in the plant as demonstrated by RNA gel blot experiments. Comparison of the genomic sequences suggested that the three cdpk genes have evolved differently. Using antibodies against atCDPK6 and atCDPK9 for immunohistochemical experiments, CDPKs were found to be expressed in specific cell types in a temporally and developmentally regulated manner.  相似文献   

14.
采用HMMER与BLAST相结合的方法确定拟南芥,水稻和杨树三种模式植物全基因组JMJC蛋白基因个数分别为21,20,24,并对其染色体定位,基因结构,保守功能域进行了系统分析,在系统进化分析基础上,将JMJC家族分为11个亚家族,内含子外显子结构分析与MPSS表达模式分析结果也进一步支持了进化关系研究.本研究有助于揭示植物JMJC基因家族的进化历史,为后续JMJ基因家族的功能提供线索,为进一步研究植物JMJC基因家族提供理论基础。  相似文献   

15.
16.
Jiang D  Yin C  Yu A  Zhou X  Liang W  Yuan Z  Xu Y  Yu Q  Wen T  Zhang D 《Cell research》2006,16(5):507-518
To understand the expansion ofmulticopy microRNA (miRNA) families in plants, we localized the reported miRNA genes from Arabidopsis and rice to their chromosomes, respectively, and observed that 37% of 117 miRNA genes from Arabidopsis and 35% of 173 miRNA genes from rice were segmental duplications in the genome. In order to characterize whether the expression diversification has occurred among plant multicopy miRNA family members, we designed PCR primers targeting 48 predicted miRNA precursors from 10 families in Arabidopsis and rice. Results from RT-PCR data suggest that the transcribed precursors of members within the same miRNA family were present at different expression levels. In addition, although miRl60 and miR162 sequences were conserved in Arabidopsis and rice, we found that the expression patterns of these genes differed between the two species. These data suggested that expression diversification has occurred in multicopy miRNA families, increasing our understanding of the expression regulation of miRNAs in plants.  相似文献   

17.
Transposable elements (TEs) are mobile genetic entities ubiquitously distributed in nearly all genomes.High frequency of codons ending in A/T in TEs has been previously observed in some species.In this study,the biases in nucleotide composition and codon usage of TE transposases and host nuclear genes were investigated in the AT-rich genome of Arabidopsis thaliana and the GC-rich genome of Oryza sativa.Codons ending in A/T are more frequently used by TEs compared with their host nuclear genes.A remarkable p...  相似文献   

18.
用生物信息学方法对拟南芥叶状子叶(LEC)基因的核苷酸序列以及推导氨基酸序列的组成、功能结构域、亲水性等进行了分析。结果表明,拟南芥的LEC蛋白为位于细胞核中的亲水性不稳定蛋白;通过对LEC蛋白的功能结构域的分析发现,LEC1和L1L蛋白中高度保守的区域即为CBF-NFYB-HMF结构域,LEC2和FUSCA3蛋白中高度保守的区域为B3结构域。  相似文献   

19.
MicroRNA(miRNA)是一类存在于动植物体内、长度为21~25nt的内源性小RNA,对生物体的转录后基因调控起着关键作用,但一些低丰度的miRNA和组织特异性miRNA往往很难发现。为了系统识别拟南芥基因组中新的非同源miRNA,首先基于已报道的拟南芥miRNA的特征,从全基因组范围中筛选出453条可能的miRNA前体;其次,为了进一步对上述miRNA前体进行筛选,利用人的miRNA前体数据构建了支持向量机模型GenomicSVM,该模型对人测试集的敏感性和特异性分别为86.3%和98.1%(30个人miRNA前体和1000个阴性miRNA前体),对拟南芥测试集的正确率为93.6%(78个miRNA前体);最后,利用GenomicSVM预测上述453条miRNA前体序列,得到了37条候选的新的拟南芥miRNA前体,为进一步的miRNA实验发现研究提供了指导。  相似文献   

20.
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26–52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号