首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet-type von Willebrand disease is a bleeding disorder resulting from gain-of-function mutations of glycoprotein (GP) Ibalpha that increase its affinity for von Willebrand factor (vWf). The two known naturally occurring mutations, G233V and M239V, both enrich the valine content of an already valine-rich region within the Cys(209)-Cys(248) disulfide loop. We tested the effect of converting other non-valine residues in this region to valine. Of 10 mutants expressed in CHO cells as components of GP Ib-IX complexes, four displayed a gain-of-function phenotype (G233V, D235V, K237V, and M239V) based on (125)I-vWf binding and adhesion to immobilized vWf. The remainder displayed loss-of-function phenotypes. The gain-of-function mutants bound vWf spontaneously and had a heightened response to low concentrations of ristocetin or botrocetin, whereas the loss-of-function mutants bound vWf more poorly than wild-type GP Ibalpha. No distinct gain- or loss-of-function conformations were identified with conformation-sensitive antibodies. Compared with cells expressing wild-type GP Ibalpha, cells expressing the gain-of-function mutants rolled significantly more slowly over immobilized vWf under flow than wild-type cells and were able to adhere to vWf coated at lower densities. In aggregate, these data indicate that the region of GP Ibalpha bounded by Asn(226) and Ala(244) regulates the affinity for vWf.  相似文献   

2.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

3.
Site-specific mutagenesis was used to study the function of a conserved, extracellular aspartic acid residue from the sheep Na,K-ATPase alpha subunit. This amino acid, Asp-121, is the penultimate residue of the first extracellular domain of the alpha subunit. The border residues of this particular extracellular loop of the alpha subunit have been shown to be determinants of ouabain sensitivity (Price, E. M., and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to determine if Asp-121 is involved in ouabain binding, five different amino acid substitutions at this position were generated. Four of the five mutant alpha subunits, containing either Asn, Ala, Glu, or Ser in place of Asp-121, conferred ouabain resistance to HeLa cells when expressed in those cells. Cloned sublines of cells selected in ouabain were characterized in terms of ouabain-inhibitable cell growth and Na,K-ATPase activity. The cells expressing the mutant Na,K-ATPase alpha subunit containing either Asn, Ala, Glu, or Ser in place of Asp-121 contained a component of Na,K-ATPase activity that was nearly 100-times more resistant to ouabain than the endogenous HeLa (human) or sheep enzyme. Apparently, conservative (Glu for Asp), isosteric (Asn for Asp), and nonconservative (Ala or Ser for Asp) substitutions all significantly decreased ouabain sensitivity. These data suggest that Asp-121 of the sheep Na,K-ATPase alpha subunit participates in the binding interaction between the enzyme and ouabain.  相似文献   

4.
The binding of von Willebrand factor (vWF) to the platelet receptor glycoprotein (GP) Ib-IX complex is a key event in hemostasis and may participate in the development of thrombotic vascular occlusion. We present here evidence that residues Ser251-Tyr279 in the GP Ib alpha-chain participate in this function. Initial studies suggested that the modality of vWF interaction with GP Ib depended on the conditions used for induction of binding, either in the presence of ristocetin, or botrocetin, or with asialo-vWF. In fact, only the 45-kDa amino-terminal fragment of GP Ib alpha inhibited the vWF-GP Ib interaction under all conditions tested, while the 84-kDa macroglycopeptide was significantly effective only in the presence of ristocetin. Moreover, the 45-kDa fragment with reduced disulfide bonds still inhibited ristocetin-induced binding but had no effect, at the concentrations tested, on botrocetin-mediated or direct asialo-vWF binding. In order to localize in more detail the functional site, the entire sequence of the 45-kDa fragment was reproduced in 27 overlapping synthetic peptides that were then used in inhibition of binding assays. This led to the identification of a linear GP Ib alpha sequence (residues Ser251-Tyr279) that effectively inhibited platelet interaction with vWF mediated by ristocetin and, at higher concentration, also by botrocetin. A shorter peptide overlapping with the longer one (residues Gly271-Glu285) was the second most active inhibitory species. This region of the molecule contains several residues with a high surface probability index, as expected for a site involved in ligand binding. Thus, while native conformation of GP Ib alpha appears to be important for optimal interaction with vWF, the results obtained with short synthetic peptides may help in defining the amino acid residues participating in this essential function.  相似文献   

5.
The Na+/Ca2+-K+ exchanger (NCKX) gene products are polytopic membrane proteins that utilize the existing cellular Na+ and K+ gradients to extrude cytoplasmic Ca2+. NCKX proteins are made up of two clusters of hydrophobic segments, both thought to consist of five putative membrane-spanning alpha-helices, and separated by a large cytoplasmic loop. The two most conserved regions within the NCKX sequence are known as the alpha1 and alpha2 repeats, and are found within the first and second set of transmembrane domains, respectively. The alpha repeats have previously been shown to contain residues critical for transport function. Here we used site-directed disulfide mapping to report that the alpha repeats are found in close proximity in three-dimensional space, bringing together key functional NCKX residues, e.g., the two critical acidic residues, Glu188 and Asp548. Glu188Cys in the alpha1 repeat could form a disulfide cross-link with Asp548Cys in the alpha2 repeat. Surprisingly, cysteine substitutions of Ser185 in the alpha1 repeat could form disulfide cross-links with cysteine substitutions of three residues in the alpha2 repeat (Ser545, Asp548, and Ser552), thought to cover close to two full turns of an alpha helix, implying an area of increased flexibility. Using the same method, Asp575, a residue critical for the K+ dependence of NCKX, was shown to be in the proximity of Ser185 and Glu188, consistent with its role in enabling K+ to bind to a single Ca2+ and K+ binding pocket.  相似文献   

6.
The Na(+)-Ca2+ exchanger contains internal regions of sequence homology known as the alpha repeats. The first region (alpha-1 repeat) includes parts of transmembrane segments (TMSs) 2 and 3 and a linker modeled to be a reentrant loop. To determine the involvement of the reentrant loop and TMS 3 portions of the alpha-1 repeat in exchanger function, we generated a series of mutants and examined ion binding and transport and regulatory properties. Mutations in the reentrant loop did not substantially modify transport properties of the exchanger though the Hill coefficient for Na+ and the rate of Na(+)-dependent inactivation were decreased. Mutations in TMS 3 had more striking effects on exchanger activity. Of mutations at 10 positions, 3 behaved like the wild-type exchanger (V137C, A141C, M144C). Mutants at two other positions expressed no activity (Ser139) or very low activity (Gly138). Six different mutations were made at position 143; only N143D was active, and it displayed wild-type characteristics. The highly specific requirement for an asparagine or aspartate residue at this position may indicate a key role for Asn143 in the transport mechanism. Mutations at residues Ala140 and Ile147 decreased affinity for intracellular Na+, whereas mutations at Phe145 increased Na+ affinity. The cooperativity of Na+ binding was also altered. In no case was Ca2+ affinity changed. TMS 3 may form part of a site that binds Na+ but not Ca2+. We conclude that TMS 3 is involved in Na+ binding and transport, but previously proposed roles for the reentrant loop need to be reevaluated.  相似文献   

7.
We have performed mutational analyses of restriction endonuclease HindIII in order to identify the amino acid residues responsible for enzyme activity. Four of the seven HindIII mutants, which had His-tag sequences at the N-termini, were expressed in Escherichia coli, and purified to homogeneity. The His-tag sequence did not affect enzyme activity, whereas it hindered binding of the DNA probe in gel retardation assays. A mutant E86K in which Lys was substituted for Glu at residue 86 exhibited high endonuclease activity. Gel retardation assays showed high affinity of this mutant to the DNA probe. Surprisingly, in the presence of a transition metal, Mo(2+) or Mn(2+), the E86K mutant cleaved substrate DNA at a site other than HindIII. Substitution of Glu for Val at residue 106 (V106E), and Asn for Lys at residue 125 (K125N) resulted in a decrease in both endonucleolytic and DNA binding activities of the enzyme. Furthermore, substitution of Leu for Asp at residue 108 (D108L) abolished both HindIII endonuclease and DNA binding activities. CD spectra of the wild type and the two mutants, E86K and D108L, were similar to each other, suggesting that there was little change in conformation as a result of the mutations. These results account for the notion that Asp108 could be directly involved in HindIII catalytic function, and that the substitution at residue 86 may bring about new interactions between DNA and cations.  相似文献   

8.
Point mutations of a part of the H(4)-H(5) loop (Leu(354)-Ile(604)) of Na(+)/K(+)-ATPase have been used to study the ATP and TNP-ATP binding affinities. Besides the previously reported amino acid residues Lys(480), Lys(501), Gly(502), and Cys(549), we have found four more amino acid residues, viz., Glu(446), Phe(475), Gln(482), and Phe(548), completing the ATP-binding pocket of Na(+)/K(+)-ATPase. Moreover, mutation of Arg(423) has also resulted in a large decrease in the extent of ATP binding. This residue, localized outside the binding pocket, seems to play a key role in supporting the proper structure and shape of the binding site, probably due to formation of a hydrogen bond with Glu(472). On the other hand, only some minor effects were caused by mutations of Ile(417), Asn(422), Ser(445), and Glu(505).  相似文献   

9.
To investigate the functional role of subsites E and F in lysozyme catalysis, Asn37 of hen egg-white lysozyme (HEL), which is postulated to participate in sugar residue binding at the right-sided subsite F through hydrogen bonding, was replaced by Ser or Gly by site-directed mutagenesis. The mutations of Asn37 neither significantly affected the binding constant for chitotriose nor the enzymatic activity toward the substrate glycol chitin. However, kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the conversion of Asn37 to Gly decreased the binding free energies for subsites E and F, while the conversion to Ser increased the substrate affinity at subsite F. It was further found that the rate constant of transglycosylation was reduced by these mutations. These results suggest that Asn37 is involved not only in substrate binding at subsite F but also in transglycosylation activity. No remarkable change in the tertiary structure except the side chain of the 37th residue was detected on X-ray analysis of the mutant proteins, indicating that the alterations in the enzymatic function between the wild type and mutant enzymes depend on limited structural change around the substitution site. It is thus speculated that the slight conformational difference in the side chain of position 37 may affect the substrate and acceptor binding at subsites E and F, leading to lower the efficiency of the transglycosylation activities of the mutant proteins.  相似文献   

10.
Human α-synuclein is the causative protein of several neurodegenerative diseases, such as Parkinson's disease (PD) and dementia with Lewy Bodies (DLB). The N-terminal half of α-synuclein contains seven imperfect repeat sequences. One of the PD/DLB-causing point mutations, E46K, has been reported in the imperfect repeat sequences of α-synuclein, and is prone to form amyloid fibrils. The presence of seven imperfect repeats in α-synuclein raises the question of whether or not mutations corresponding to E46K in the other imperfect KTKE(Q)GV repeats have similar effects on aggregation and fibrillation, as well as their propensities to form α-helices. To investigate the effect of E(Q)/K mutations in each imperfect repeat sequence, we substituted the amino acid corresponding to E46K in each of the seven repeated sequences with a Lys residue. The mutations in the imperfect KTKE(Q)GV repeat sequences of the N-terminal region were prone to decrease the lag time of fibril formation. In addition, AFM imaging suggested that the Q24K mutant formed twisted fibrils, while the other mutants formed spherical aggregates and short fibrils. These observations indicate that the effect of the mutations on the kinetics of fibril formation and morphology of fibrils varies according to their location.  相似文献   

11.
Recombinant-derived human interleukin-1 alpha (IL-1 alpha), purified from Escherichia coli, was resolved by isoelectric focusing on polyacrylamide gels into two species of isoelectric points (pI) 5.45 and 5.20, which constituted approximately 75% and approximately 25% of the total IL-1 alpha protein respectively. The pI 5.45 and pI 5.20 species were separated by chromatofocusing and subjected to N-terminal sequence analysis. The pI 5.45 species contained the expected Asn residue at position 36 of the mature protein sequence whereas the pI 5.20 species contained an Asp residue at the same position. A mutant protein in which Asn-36 was substituted for a Ser residue was isolated from E. coli and shown to be homogeneous on isoelectric focusing analysis with a pI = 5.45. 1H-n.m.r. and circular dichroism analyses of wild-type and the mutant IL-1 alpha indicated a similar conformation which was also indicated by the identical receptor binding affinities of IL-1 alpha with Asn, Asp or Ser in position 36. The mutant protein was stabilized against specific base-catalysed and temperature-induced deamidation, and may be more suitable than the wild-type position for physical and structural studies.  相似文献   

12.
The properties of a Gs alpha mutant with an Asn substituted for Ser at position 54, designated mutant 54Asn alpha s, were studied after expression in S49 alpha s-deficient (cyc-) cells. Ser-54 in alpha s is comparable to Ser-17 in Ras, which is involved in binding Mg2+ associated with bound nucleotide. 54Asn alpha s did not restore either hormone-induced cyclic AMP production in intact cyc- cells or hormone-induced adenylyl cyclase activation in membranes isolated from these cells. The defect was a failure of ligand-bound receptor to activate 54Asn alpha s, since the mutant protein retained the ability to activate adenylyl cyclase in isolated membranes in the presence of GTP or GTP gamma S. Guanine nucleotide regulation of mutant alpha s suggested that it has increased guanine nucleotide exchange rates and an increased preference for diphosphates over triphosphates. Hormone stimulation magnified the preference of 54Asn alpha s for diphosphates, which could account for its inability to be activated by receptor. The properties of this mutant are discussed in terms of similarities to and differences with the analogous RasH mutant, which has been shown to interfere with endogenous Ras function in cells.  相似文献   

13.
14.
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.  相似文献   

15.
The nucleotides in domain I of 18 S rRNA that are important for the binding of the essential yeast ribosomal protein YS11 are mainly in a kink-turn motif and the terminal loop of helix 11 (H11). In the atomic structure of the Thermus thermophilus 30 S subunit, 16 amino acids in S17, the homolog of YS11, are within hydrogen bonding distance of nucleotides in 16 S rRNA. The homologous or analogous 16 amino acids in YS11 were replaced with alanine; nine of the substitutions slowed the growth of yeast cells. The most severe effects were caused by mutations R103A, N106A, K133A, T134A, and K151A. The T. thermophilus analogs of Arg103, Asn106, Thr134, and Lys151 contact nucleotides in the kink-turn motif of 16 S rRNA, whereas Lys133 contacts nucleotides in the terminal loop of H11. These contacts are predominantly with backbone phosphate and sugar oxygens in regions that deviate from A-form geometry, suggesting that YS11 recognizes the shape of its rRNA-binding site rather than reading the sequence of nucleotides. The effect of the mutations on the binding of YS11 to a domain I fragment of 18 S rRNA accorded, in general, with their effect on growth. Mutations of seven YS11 amino acids (Ser77, Met80, Arg88, Tyr97, Pro130, Ser132, and Arg136) whose homologs or analogs in S17 are within hydrogen bonding distance of nucleotides in 16 S rRNA did not affect binding. Apparently, proximities alone do not define either the amino acids or the nucleotides that are important for recognition.  相似文献   

16.
Using site-directed mutagenesis, the ras-related and essential yeast YPT1 gene was changed to generate proteins with amino acid exchanges within conserved regions. Bacterially produced wild-type proteins were used for biochemical studies in vitro and were found to have properties very similar to mammalian ras proteins. Gene replacement allowed the study of physiological consequences of the mutations in yeast cells. Lys21----Met and Asn121----Ile substitutions rendered the protein incapable of binding GTP and caused lethality. Ser17----Gly and Ala65----Thr substitutions slightly changed the protein's apparent binding capacity for either GDP or GTP and altered its intrinsic GTPase activity. These mutations were without effect on cellular growth. The YPTgly17,thr65 mutant protein displayed a significantly altered relative capacity for guanine nucleotide binding but a GTPase activity comparable to the wild-type protein. In contrast to the Ala65----Thr substitution, the double mutant displayed a significantly reduced capacity for autophosphorylation and allowed cells to grow only poorly. Cellular growth was improved when this mutant protein was overproduced.  相似文献   

17.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

18.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

19.
Thrombospondins (THBSs) are multimodular, secreted proteins characterized by a signature domain comprising a unique set of 13 calcium-binding repeats flanked by epidermal growth factor (EGF)-like and lectin-like modules. A polymorphism that changes a conserved Asn to Ser at residue 700 in the most N-terminal calcium-binding repeat of THBS-1 (repeat 1C) is found in 8-10% of European populations and has been linked to increased risk of premature coronary artery disease. The Ser substitution leads to altered stability in the EGF-like and wire modules of the THBS-1 signature domain as assessed by differential scanning calorimetry carried out in 2 mm or 200 mum calcium. Studies of the melting profiles of the THBS-2 signature domain proteins with Asn or Ser at position 702 (homologous to 700 in THBS-1) revealed that the impact of the Ser allele is similar in both THBS-1 and THBS-2. Structure determination of the Ser(702) THBS-2 variant in 2 mm calcium showed that repeat 1C contains two bound calcium ions as in the crystal of the Asn(702) protein, including the ion that is coordinated by Asn(702), and is associated with changes in conformation of repeat 1C and the adjacent EGF-like modules. The Ser substitution leads to the decreased ability of soluble THBS-2 signature domain protein to bind 4B6.13, a conformation-sensitive monoclonal antibody that recognizes an epitope in repeat 1C. These results indicate that although THBS harboring the Ser allele binds a full complement of calcium ions, repeat 1C is altered, leading to destabilization of surrounding structures.  相似文献   

20.
We have previously characterized an influenza A (H1N1) virus which has host-dependent growth and receptor binding properties and have shown that a mutation which removes an oligosaccharide from the tip of the hemagglutinin (HA) by changing Asn-129 to Asp permits this virus to grow to high titer in MDBK cells, (C. M. Deom, A. J. Caton, and I. T. Schulze, Proc. Natl. Acad. Sci. USA 83:3771-3775, 1986). We have now isolated monoclonal antibodies specific for the mutant HA and have used escape mutants to identify alterations in HA sequence which reduce virus yields from MDBK cells without reducing those from chicken embryo fibroblasts. Two types of escape mutants which grow equally well in chicken embryo fibroblasts were obtained. Those with the parent phenotype contain Asn at residue 129 and are glycosylated at that site. Those with the mutant phenotype are unchanged at residue 129 but have a Gly to Glu substitution at residue 158, which is close to residue 129 on the HA1 subunit. Binding assays with neoglycoproteins containing N-acetylneuraminic acid in either alpha 2,3 or alpha 2,6 linkage to galactose showed that the MDBK-synthesized oligosaccharides at Asn-129 reduce binding to both of these receptors, leaving the HA's preference for alpha 2,6 linkages unchanged. Glu at residue 158 greatly reduces binding to both receptors without reducing virus yields from MDBK cells. We conclude that changes in the receptor binding properties of the HA can result either from direct alteration of the HA protein by host cell glycosylation or from mutations in the HA gene and that these changes generate heterogeneity that can contribute to the survival of influenza A virus populations in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号