首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

2.
Plasmid DNA was directly encapsulated into biocompatible polymer microparticles via radical polymerization in an inverse emulsion system. Acrylamide-based microspheres 0.2-1 microm in diameter were prepared using an acid-cleavable difunctional monomer. Retention of the DNA payload at physiological pH with complete release under acidic conditions at lysosomal pH was demonstrated. By trapping the plasmid DNA within the cross-linked microparticle, enzymatic degradation was prevented when exposed to serum nucleases. For vaccine development, these delivery vehicles were also investigated for their ability to generate immune responses when delivered to phagocytic cells of the immune system. Encapsulated plasmid DNA demonstrated immunostimulatory activity in macrophages, leading to cytokine secretion of IL-6 with a response approximately 40-fold higher than that achieved with DNA alone.  相似文献   

3.
Cationic lipids are widely used for gene transfer in vitro and show promise as vectors for in vivo gene therapy applications. However, there is limited understanding of the cellular mechanisms involved in nonviral gene transfer. We investigated two major steps that could be limiting barriers to cationic lipid-mediated gene transfer in vitro. We used a fluorescent plasmid to study the cellular uptake and the intracellular fate of lipoplexes during in vitro transfection of fibroblast cells and found that 100% of the cells take up lipoplexes. The intracellular staining observed with lipoplexes was clearly different from that obtained with endocytosed fluorescent dextran. This suggests that cells readily take up lipoplexes by a mechanism that could be different from endocytosis in our conditions. However, the escape of DNA from intracellular vesicles could be a major limiting barrier to gene transfer. Direct injection of plasmid DNA into the nucleus and cytoplasm of cells indicated that DNA traffic from the cytoplasm to the nucleus might be also an important limiting step.  相似文献   

4.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

5.
BACKGROUND: Several cell types are susceptible to transfection in vivo using naked plasmid DNA. The mechanisms involved in mediating in vivo transfection are incompletely known, but evidence suggests that receptor-mediated endocytosis is important for specific types of cells. In this study we tested the hypothesis that residual Escherichia coli lipopolysaccharide (LPS) forms a non-covalent complex with expression plasmid DNA, and host-cell-derived soluble LPS-binding proteins bind to the DNA-LPS complexes in order to facilitate receptor-mediated endocytosis. METHODS: Cells from the murine synovial lining were used as an in vivo model system and in vivo luciferase imaging was used to quantify levels of transgene expression. Using a series of gene-deleted mice, the roles of LPS recognition complex proteins, lipopolysaccharide-binding protein (LBP), CD14 and MD-2, in the process of in vivo transfection were determined. RESULTS: Luciferase expression assays revealed that mice lacking LBP or CD14 had increased luciferase expression (p < 0.023 and < 0.165, respectively), while mice deleted of MD-2 had significant reductions in luciferase expression (p < 0.001). Gene deletion of hyaluronic acid binding protein CD44 was used as a control and had no statistically significant effect on transgene expression in vivo. In muscle tissue, where neither cell surface nor soluble MD-2 is expressed, no MD-2 dependence of plasmid transfection was identified, suggesting the role of MD-2 is tissue or cell type specific. Additionally, depleting mice of macrophages showed that luciferase expression is occurring within fibroblast-like synoviocytes. CONCLUSIONS: Our data support a physical association between LPS and E. coli-derived plasmid DNA, and that in vivo transfection of fibroblast-like synoviocytes is dependent on the soluble form of the LPS-binding protein MD-2.  相似文献   

6.
Nanobiotechnology focuses on the biological effects and applications of nanoparticles that include nano-safety, drug encapsulation and nanotherapeutics. The present study focuses on hydrophilic nanospheres of copolymers N-isopropylacrylamide [NIPAAM] and vinyl pyrrolidone [VP], encapsulating a bioactive derivative of 5-fluorouracil-hexyl-carbamoyl fluorouracil (HCFU). The size of the nanospheres was approximately 58 nm and the surface charge measured was -15.4 mV. Under optimal conditions, the yield was >80%, and the drug loading was 2%. The entrapment efficiency was approximately 75%. Wide-angle X-ray diffraction analysis showed that the entrapped HCFU was present in an amorphous state, which has higher water solubility compared with the crystalline state. Slow drug release from nanospheres was observed in PBS and serum, with approximately 80% released at 37 degrees C after 72 h. The HCFU loaded polymeric nanospheres have been found to be stable in whole blood having negligible RBC toxicity. Cytotoxicity in Mia-Paca 3, pancreatic cancer cell line was done in a 24-72 h assay. Dose dependant cytotoxicity was observed when incubated with various concentrations of HCFU loaded polymeric nanospheres while HCFU per se (<1 mg) showed 90% toxicity within 24 h.  相似文献   

7.
A non-toxic and efficient gene carrier is one requirement for clinical gene therapy. In this study, amphiphilic peptides composed of arginines and valines were synthesized and characterized as plasmid DNA (pDNA) carriers. The peptides have a cationic region containing 1-4 arginines and a hydrophobic region containing 6 valines. The arginine-valine peptides (RV peptides) formed micelles in aqueous solution with a critical micelle concentration (CMC) of 1.35 mg/ml. In gel retardation assay, the RV peptides retarded all pDNA at weight ratios (pDNA:RV peptide) of 1:3 for R1V6, 1:2 for R2V6 and R3V6, and 1:1 for R4V6. A heparin competition assay showed that the R3V6 peptide formed tighter complexes with pDNA than poly-L-lysine (PLL). In vitro transfection assay into HEK293 cells showed that the R1V6 and R2V6 peptides had the highest transfection efficiencies at 1:30 weight ratios (pDNA:RV peptide), while the R3V6 and R4V6 peptides had the highest efficiencies at 1:20 weight ratios. Under optimal conditions, the R3V6 peptide had the highest transfection efficiency of all the RV peptides and PLL. MTT assay showed that the RV peptides did not have any detectable toxicity to cells. Therefore, the RV peptide may be useful for the development of non-toxic gene carriers.  相似文献   

8.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

9.

Background

Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose.

Results

In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Gγ2 subunit and a Gαq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus.

Conclusions

Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Gγ2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity.  相似文献   

10.
Lipopolysaccharide-defective mutants of Salmonella typhimurium were transformed by plasmid DNA with a Ca2+ treatment method. Only those mutants with an Rc or Rd2 chemotype, due to galE or rfaF mutations, respectively, gave efficiencies greater than 10(5) transformants per microgram of DNA, frequencies 8- to 630-fold higher than with smooth strains or other rough mutants.  相似文献   

11.
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.  相似文献   

12.
As a cationic non‐viral gene delivery vector, poly(agmatine/ N, N′‐cystamine‐bis‐acrylamide) (AGM‐CBA) showed significantly higher plasmid DNA (pDNA) transfection ability than polyethylenimine (PEI) in NIH/3T3 cells. The transfection expression of AGM‐CBA/pDNA polyplexes was found to have a non‐linear relationship with AGM‐CBA/pDNA weight ratios. To further investigate the mechanism involved in the transfection process of poly(AGM‐CBA), we used pGL3‐control luciferase reporter gene (pLUC) as a reporter pDNA in this study. The distribution of pLUC in NIH/3T3 cells and nuclei after AGM‐CBA/pLUC and PEI/pLUC transfection were determined by quantitative polymerase chain reaction (qPCR) analysis. The intracellular trafficking of the polyplexes was evaluated by cellular uptake and nuclei delivery of pLUC, and the intracellular availability was evaluated by the ratio of transfection expression to the numbers of pLUC delivered in nuclei. It was found that pLUC intracellular trafficking did not have any correlation with the transfection expression, while an excellent correlation was found between the nuclei pLUC availability and transfection expression. These results suggested that the intracellular availability of pLUC in nuclei was the rate‐limiting step for pLUC transfection expression. Further optimization of the non‐viral gene delivery system can be focused on the improvement of gene intracellular availability.  相似文献   

13.
The radioprotective effect of a non-toxic bioactive component in plant milk thistle, silibinin against genotoxicity induced by γ-irradiation was investigated in vivo/in vitro. Under in vitro conditions of irradiation, silibinin protected plasmid pBR322 DNA against γ-radiation-induced strand breaks in a concentration dependent manner (0–200 μM). Under cellular conditions of radiation exposure (3 Gy), silibinin offered protection to lymphocyte DNA as evidenced from reduction in DNA damage and micronuclei formation, which showed correlation to the extent of intracellular reactive oxygen species reduction. Our extended animal studies suggest that oral administration of silibinin (70 mg/kg for 3 days) to mice prior to whole-body γ-exposure (7.5 Gy) resulted in significant protection to radiation-induced mortality and DNA damage in blood leukocytes. However, silibinin treatment after irradiation was not as effective as pre-administration. In conclusion, present study indicated that silibinin has a strong potential to prevent radiation-induced DNA damage under both in vitro and in vivo.  相似文献   

14.
Poly(polyethylene glycol methyl ether methacrylate-co-methacrylic acid)-block-poly(methyl methacrylate) P(PEGMEMA-co-MAA)-b-PMMA block copolymer were prepared via RAFT (reversible addition-fragmentation chain transfer) polymerization and subsequently self-assembled into micelles as a drug delivery carrier for albendazole (ABZ). For comparison, the micelles were additionally cross-linked to study the effect of shell-cross-linking on the biological activity. The hydrodynamic diameter of cross-linked and un-cross-linked micelles was approximately 40 nm in both cases. While the cross-linked micelle was stable even in good solvents for both blocks, the un-cross-linked micelle was found to lose its integrity in cell growth media. Crosslinking had a major effect on the rate of drug release reducing it dramatically from 50% (uncrosslinked) to around 20% (crosslinked) over a 30 h incubation period. Both drug delivery systems were tested on human prostate cancer cells (PC-3, DU-145) and human ovarian cancer cells (OVCAR-3, A-2780). No toxic effects were measured with the unloaded micelle while the ABZ loaded un-cross-linked micelle lead to IC(50) values between 0.2 and 0.9 μM depending on the cell line. The IC(50) dropped to values between 0.006 and 0.06 μM, depending on cell line, once the micelles were stabilized by cross-linking. Three treatment cycles with ABZ for one day, followed by two days incubation in media using ABZ-loaded drug carriers led to complete cell death even at low concentrations in the case of the cross-linked micelle only. Cellular uptake has been studied using fluorescently labeled micelles and Nile red as model drug, showing cell uptake above the CMC but no micelle uptake below the CMC. Additional biological studies, such as colony formation assay and tubulin disorganization tests, were also performed to gain more insight into the effect of cross-linking of the shell of the micelle. In conclusion, shell-cross-linking is highly recommended, even for glassy micelles, for an efficient cellular uptake at low concentrations.  相似文献   

15.
Dendrimers, dendrons, and hyperbranched polymers are gaining popularity as novel drugs, imaging agents, and drug delivery systems. They present advantages of well-defined molecular weight, multivalent surfaces, and high drug carrying capacity. Moreover, it is emerging that such architectures can display unique endocytic properties. As poly(ethylene glycol) (PEG) is widely used for protein and drug conjugation, the aim of this study was for the first time to synthesize novel, branched PEG-based architectures, to define their cytotoxicity and, via preparation of Oregon green (OG) conjugates define the effect of structure on their cellular uptake. Five PEG-based dendrons were synthesized using monodisperse Fmoc-amino PEG propionic acid (M(w) = 840) as a monomer, and cadaverine, tris(2-aminoethyl)amine or lysine as the branching moieties. These were diamino,bisPEG (M(w) = 1300); triamino,trisPEG (Mw = 1946); tetraamino,tetraPEG (M(w) = 3956); monocarboxy,diamino,bisPEG (M(w) = 1346); and monocarboxy,tetraamino,tetraPEG (M(w) = 3999). These products had NH(2) or both NH(2) and COOH terminal groups and the identity was verified by amino group analysis and ESI-TOF mass spectroscopy. Purity was determined by HPLC. Representative structures were not toxic towards an endothelial-like cell line (ECV304) at concentrations up to 4 mg/mL (over 72 h). At 37 degrees C, all of the OG-labeled PEG dendrons showed progressive uptake by ECV304 cells, but tetraamino,tetraPEG showed the greatest rate of internalization over the first 20 min. Cellular uptake was inhibited at 4 degrees C, and PEG dendron localization to perinuclear vesicles was confirmed by fluorescence microscopy. These well-defined novel architectures have potential for further development as targetable drug delivery systems or tools for construction of structurally defined modified surfaces.  相似文献   

16.
Gene therapy depends on safe and efficient gene delivery. The skin is an attractive target for gene delivery because of its accessibility. Recently, in vivo electroporation has been shown to enhance expression after injection of plasmid DNA. In this study, we examined the use of electroporation to deliver plasmid DNA to cells of the skin in order to demonstrate that localized delivery can result in increased serum concentrations of a specific protein. Intradermal injection of a plasmid encoding luciferase resulted in low levels of expression. However, when injection was combined with electroporation, expression was significantly increased. When performing this procedure with a plasmid encoding interleukin-12, the induced serum concentrations of gamma-interferon were as much as 10 fold higher when electroporation was used. The results presented here demonstrate that electroporation can be used to augment the efficiency of direct injection of plasmid DNA to skin.  相似文献   

17.
18.
Cell specific gene silencing effects of antisense oligodeoxynucleotide (AS-ODN), synthetic small interfering RNA (siRNA-S), and siRNA expressing plasmid (siRNA-P) were comparatively evaluated. Poly(ethylenimine) (PEI) and PEI-graft-poly(ethylene glycol)-folate (PEI-PEG-FOL) conjugate were used to form nanosized polyelectrolyte complexes with the above three nucleic acids coding for inhibition of green fluorescent protein (GFP) expression. The three nucleic acid complexes formulated with either PEI or PEI-PEG-FOL had comparable sizes and surface zeta potential values. Among the three inhibitory nucleic acids, siRNA-S, when complexed with PEI-PEG-FOL, exhibited the most dose-effective and fastest gene silencing effect for FOL receptor overexpressing KB cells, because the siRNA-S could be directly delivered, via FOL receptor-mediated endocytosis, into the cytoplasm compartment where the degradation processing of target GFP mRNA occurred in a sequence-specific manner.  相似文献   

19.
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3′ position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA–protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (–NH2) at the C-3′ position of the daunosamine moiety by a trisubstituted amidino group (–N=CH–NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.  相似文献   

20.
One of the steps that limit transfection efficiency in non-viral gene delivery is inefficient nuclear import of plasmid DNA, once it has been delivered into the cytoplasm. Recently, via microinjection into the cytoplasm and in situ hybridizations into a few cell types, it was shown that a region of Simian virus 40(SV40), specifically a c. 372-bp fragment of SV40 genomic DNA encompassing the SV40 promoter-enhancer-origin of replication (SV40 DTS), could enable the nuclear import of a plasmid carrying these sequences (Dean D.A. Exp. Cell Res. 230 (1997) 293). In this report, we address the issue of the suitability of the SV40 DTS for cationic lipid-mediated gene delivery, and its capacity to improve the efficiency of the transfection process. For this study, we used transient reporter gene expression assays on various cell types. The gene expression from the plasmid constructs carrying the SV40 DTS varied with cell type and plasmid construct used. Such cell-type and plasmid-construct dependency on gene expression from plasmids containing the SV40 DTS suggests that the gene expression from plasmids is not entirely dependent on its ability to enhance the nuclear import of said plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号