首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme oxygenase (HO)-1 is a stress-inducible enzyme protecting cells against oxidative stress, and mechanisms have been considered to depend exclusively on its enzyme activity. This study aimed to examine if the protein lacking catalytic activities could also display such resistance against oxidative stress. Stable transfectants of rat wild type HO-1 cDNA (HO-1-U937) and those of its H25A mutant gene (mHO-1-U937) were established using human monoblastic lymphoma cell U937. HO-1-U937 and mHO-1-U937 used in the study exhibited similar levels of the protein expression, while only the former increased enzyme activities. HO-1- and mHO-1 U937 cells became more and less sensitive to H(2)O(2) than mock transfectants, respectively; such distinct susceptibility between the cells was ascribable to differences in the capacity to scavenge H(2)O(2) through catalase and to execute iron-mediated oxidant propagation. On the other hand, both cell lines exhibited greater resistance to tert-butyl hydroperoxide than mock transfectants. The resistance of HO-1-U937 to hydroperoxides appeared to result from antioxidant properties of bilirubin, an HO-derived product, while that of mHO-1-U937 was ascribable to increased contents of catalase and glutathione. These results provided evidence that gene transfection of the activity-lacking mutant HO-1 protects cells against oxidative stress through multiple mechanisms involving up-regulation of catalase and glutathione contents.  相似文献   

2.
Vitamin E reacts with radicals such as lipid peroxyl radical (LOO*) and singlet oxygen ((1)O2), and plays a role in inhibiting lipid peroxidation in cell membranes and preventing the oxidation of low-density lipoproteins (LDL). However, only a few studies have investigated the effect of vitamin E on the degradation of hydrogen peroxide (H2O2). Therefore, we examined the effect of vitamin E on glutathione redox cycle-dependent H2O2 degradation activity in human umbilical vein endothelial cells (HUVEC). Confluent HUVEC were cultured for seven days in media containing various concentrations of vitamin E (alpha-tocopherol). The level of glutathione redox cycle-dependent H2O2 degradation activity and the intracellular glutathione level were determined. HUVEC that had been cultured in the presence of higher concentrations of vitamin E had a higher level of H2O2 degradation activity and a higher intracellular content of the reduced form of glutathione (GSH). Therefore, it is suggested that the vitamin E-induced increase in H2O2 degradation activity in HUVEC results from an increase in intracellular GSH level.  相似文献   

3.
We investigated the effects of the antibiotic ceftazidime (CAZ) on the cytolytic action of the neutrophil myeloperoxidase-hydrogen peroxide-chloride anion system (MPO/H(2)O(2)/Cl(-)). In this system, myeloperoxidase catalyses the conversion of H(2)O(2) and CI(-) to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC) were capable of taking up active MPO. In presence of H(2)O(2) (10(-4) M), this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of (51)Cr from HUVEC and expressed as an index of cytotoxicity (IC). Dose dependent protection was obtained for CAZ concentrations ranging from 10(-5) to 10(-3) M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H(2)O(2), but when cytolysis was achieved with H(2)O(2) or O(2) (-) generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H(2)O(2)) was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon). So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.  相似文献   

4.
一氧化氮供体对过氧化氢引起的心肌细胞损伤的保护作用   总被引:7,自引:0,他引:7  
Zhang F  Zhang T  Zhu XX  Liu LN  Li C  Mei QB 《生理学报》2004,56(4):481-486
关于一氧化氮(NO)对心肌细胞是否具有保护作用目前尚存在争议,为探讨NO对过氧化氢(H2O2)引起的心肌细胞损伤是否具有保护作用及其可能的机制,实验将体外培养的新生大鼠心肌细胞分为3组(1)阴性对照组(Normal组);(2)H2O2组H2O2(0.1mmol/L)与心肌细胞共育4h;(3)S-亚硝基-N-乙酰青霉胺(SNAP)+H2O2组NO供体SNAP(0.5mmol/L)处理心肌细胞10min后,加入H2O2与心肌细胞共育4 h.用流式细胞术检测心肌细胞凋亡率,心肌细胞损伤程度以心肌细胞存活率和乳酸脱氢酶(lactate dehydrogenase,LDH)活性来表示,同时检测心肌细胞超氧化物歧化酶(superoxide dismutase,SOD)活性和丙二醛(MDA)含量.通过激光共聚焦显微术检测在不同处理条件下心肌细胞胞内钙的变化.结果表明,正常心肌细胞LDH活性和细胞存活率分别为631.4±75.6 U/L和93.1±6.2%,细胞凋亡率为0;H2O2处理细胞后可使细胞LDH活性显著增高(1580.5±186.7 U/L,P<0.01),细胞存活率明显下降(58.3±7.6%,P<0.01),流式细胞仪检测到大量心肌细胞凋亡,凋亡率为26.4±5.7%;SOD活性较正常细胞19.67±0.85 NU/ml显著下降,为14.73±1.68 NU/m(P<0.01),MDA含量较正常细胞6.95±0.83μmol/L显著增高,为15.35±3.49μmol/L(P<0.01).SNAP预处理细胞可显著提高心肌细胞存活率(79.7±9.3%,P<0.01),降低LDH活性和细胞凋亡率(分别为957.8±110.9 U/L和9.1±3.3%,P<0.01);并提高细胞抗氧化能力,表现为较H2O2处理组的SOD活性增高(21.36±3.11 NU/ml,P<0.01),MDA含量下降(9.12±1.47 μmol/L,P<0.01).激光共聚焦显微镜检测结果表明,H2O2可升高细胞内钙,而SNAP则可降低细胞内钙,SNAP预处理细胞后可取消H2O2升高细胞内钙的作用.上述结果提示,NO供体SNAP可对抗H2O2对心肌细胞的损伤,其机制与提高心肌细胞抗氧化损伤能力和对抗H2O2引起的细胞内钙超载有关.  相似文献   

5.
Extracellular purines are involved in the regulation of a wide range of physiological processes, including cytoprotection, ischemic preconditioning, and cell death. These actions are usually mediated via triggering of membrane purinergic receptors, which may activate antioxidant enzymes, conferring cytoprotection. Recently, it was demonstrated that the oxidative stress induced by cisplatin up-regulated A1 receptor expression in rat testes, suggesting an involvement of purinergic signaling in the response of testicular cells to oxidant injury. In this article, we report the effect of hydrogen peroxide on purinergic agonist release by cultured Sertoli cells. Extracellular inosine levels are strongly increased in the presence of H2O2, suggesting an involvement of this nucleoside on Sertoli cells response to oxidant treatment. Inosine was observed to decrease H2O2-induced lipoperoxidaton and cellular injury, and it also preserved cellular ATP content during H2O2 exposure. These effects were abolished in the presence of nucleoside uptake inhibitors, indicating that nucleoside internalisation is essential for its action in preventing cell damage.  相似文献   

6.
The antioxidant activity of flavonoids has been suggested to contribute to several health benefits associated with the consumption of fruits and vegetables. Four flavonols - myricetin (M), quercetin (Q), kaempferol (K) and galangin (G), all with different numbers of hydroxyl moieties (-OH) - were examined for their antioxidant activity and cytotoxicity on human umbilical vein endothelial cells (HUVECs) and for their potential antiangiogenic and cell adhesion effects. The relative antioxidant capacity of these flavonols in cell culture medium (cell-free system) and their intracellular antioxidant activity were M = Q > K = G, which correlated respectively with the presence of 3, 2, 1 and 0 moieties of -OH on their B-ring. The higher the numbers of -OH moieties on the B-ring the less toxic the flavonol was to HUVEC, and the LD50 was determined as: M (100 microM) > Q (50 microM) > K (20 microM) > G (10 microM). These flavonols at approximately 0.5 LD50 doses suppressed the vascular endothelial growth factor (VEGF)-stimulated HUVEC tubular structure formation by: M (47%) > Q (37%) > K (15%) > G (14%), which was not linearly associated with their numbers of -OH moieties. However, the magnitude of flavonols' suppression of activated U937 monocytic cells adhesion to HUVEC was associated with the number of -OH moieties on the B-ring. This was prominent when U937 cells were pretreated with these flavonols. In contrast, the numbers of -OH moiety had no apparent influence on the adhesion or expression of adhesion molecules when activated HUVECs were pretreated with these flavonols. The presence of different numbers of -OH moieties on the B-ring of the flavonols may contribute to their antioxidant activity as well as their toxicity and may play an important role in their potency for biological action such as angiogenesis and immune-endothelial cell adhesion, which, respectively, are important processes in the development of cancer and atherosclerosis.  相似文献   

7.
This study used the human monocytic cell line U937 to examine whether or not Porphyromonas gingivalis fimbriae could induce the adhesion of monocytes to endothelial cells. An in vitro adhesion assay was used to investigate the effects of the fimbriae on U937 cell adhesion to human umbilical vein endothelial cells (HUVEC). The fimbriae enhanced U937 cell adhesion to HUVEC in a dose-dependent manner. U937 cells adhered better to HUVEC pretreated with the fimbriae for a minimum of 2 hr than to untreated HUVEC. The enhanced adhesion was inhibited by a monoclonal antibody against P. gingivalis 381 fimbriae. Pretreatment of U937 cells with the fimbriae for 24 hr enhanced U937 cell adhesion to HUVEC approximately 4-fold. This phenomenon was inhibited by an anti-CD11b antibody, suggesting the involvement of CD11b. These results indicate that P. gingivalis fimbriae can induce monocyte adhesion to the endothelial cell surface. They also suggest that the fimbriae may be involved in the initial event for infiltration of monocytes into the periodontal tissues of individuals with adult periodontitis.  相似文献   

8.
9.
Much research effort has focused on the identification of phytochemicals in fruit and vegetables which exert beneficial effects. Our research examines modulatory effects of phytochemicals on cytotoxicity, genotoxicity and oxidative reactions in cell systems. Two examples of our studies are discussed. First, the potential beneficial effects of flavonoids are demonstrated. Flavonoids are reported to exhibit a wide variety of biological effects, including antioxidant and free-radical-scavenging activities. The aim of the study was to determine if flavonoids could protect against H2O2-induced DNA damage, as measured by the comet assay, in Caco-2 and HepG2 cells. Both cell lines were supplemented with increasing concentrations of myricetin, quercetin and rutin for 24 h followed by exposure to H2O2 (50 microM) for 30 min. Exposure to H2O2 for 30 min at 37 degrees C resulted in significant DNA damage and pre-incubation with the flavonoids before H2O2 exposure significantly (P <0.05) protected Caco-2 and HepG2 cells against H2O2-induced DNA damage. Secondly, we illustrate the use of cellular models to study oxysterol-induced toxicity. Oxysterols are generated during the cooking and processing of foods and may be produced endogenously by the oxidation of membrane lipids. Recent findings suggest that oxysterols may modulate cytotoxicity by exerting effects on the induction of apoptosis. 7beta-Hydroxycholesterol (7beta-OHC) and 25-hydroxycholesterol, both of which are commonly found in foods, were investigated for their abilities to induce apoptosis in a human monocytic blood cell line, U937, and in the human hepatoma cell line, HepG2 cells. U937 and HepG2 cells were incubated for up to 48 h with 30 microM oxysterol. 7beta-OHC induced apoptosis in U937 cells as measured by non-random DNA fragmentation, condensed and fragmented nuclei, and the generation of hypodiploid cells. In contrast, oxysterols may induce cell death by a different mechanism in the hepatoma cells, possibly by necrosis.  相似文献   

10.
The use of N,N'-bis (2-hydroxybenzyl) ethylenediamine-N,N'-diacetic acid (HBED) for iron chelation therapy is currently being tested. Besides its affinity for iron, bioavailability, and efficacy in relieving iron overload, it is important to assess its anti- and/or pro-oxidant activity. To address these questions, the antioxidant/pro-oxidant effects of HBED in a cell-free solution and on cultured Chinese hamster V79 cells were studied using UV-VIS spectrophotometry, oximetry, spin trapping, and electron paramagnetic resonance (EPR) spectrometry. The results indicate that HBED facilitates Fe(II) oxidation but blocks O2(.-)-induced reduction of Fe(III) and consequently pre-empts production of .OH or hypervalent iron through the Haber-Weiss reaction cycle. The efficacy of HBED as a 1-electron donor (H-donation) was demonstrated by reduction of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)-derived nitrogen-centered radical cation (ABTS(.+)), accompanied by formation of a short-lived phenoxyl radical. HBED also provided cytoprotection against toxicity of H2O2 and t-BuOOH. Our results show that HBED can act both as a H-donating antioxidant and as an effective chelator lacking pro-oxidant capacity, thus substantiating its promising use in iron chelation therapy.  相似文献   

11.
Chromium supplementation has been proposed to promote the action of insulin and the lowering of blood glucose levels in diabetic patients. However, the molecular mechanism by which chromium increases insulin sensitivity is not known. Using U937 monocytes as a cell culture model, this study demonstrates that chromium inhibits the secretion of TNF-alpha, a cytokine known to inhibit the sensitivity and action of insulin. U937 cells were cultured with high levels of glucose (mimicking diabetes) in the presence or absence of chromium chloride in the medium at 37 degrees C for 24 h. This study demonstrates that chromium supplementation prevents the increase in TNF-alpha levels and oxidative stress caused by the high levels of glucose in cultured U937 monocytic cells. Similarly, chromium supplementation prevented elevated TNF-alpha secretion and lipid peroxidation levels in H(2)O(2)-treated U937 cells. This study demonstrates for the first time that chromium supplementation inhibits TNF-alpha secretion in U937 monocytes cultured in high-glucose medium, which appears to be mediated by its antioxidative effect. This provides evidence for a novel molecular mechanism by which chromium supplementation may increase insulin sensitivity and glycemic control in diabetic patients.  相似文献   

12.
The development of cytochrome b558 (Cyt b) as determined spectrophotometrically, was investigated in human polymorphonuclear neutrophils (PMN), monocytes (MN) and during differentiation of HL-60 and U 937 cells induced by retinoic acid (RA) alone or in combination with IFN gamma. O2- release in response to a panel of stimulating agents, ie latex particles, opsonised zymosan, PMA, Con A and fMLP, was monitored by lucigenin-amplified chemiluminescence (CL). In parallel the expression of myeloperoxidase (MPO) was investigated and its catalytic activity on H2O2 related to luminol-amplified CL responses. In mature PMN and MN phagocytes, regardless of the stimulating agent, the O2- production is closely related to Cyt b but not to MPO specific contents. In differentiated HL-60 and U 937 cells, the oxidative metabolism increases in parallel with Cyt b specific contents, both being enhanced by the addition of IFN gamma to the RA treatment. However, marked differences in the O2- production intensities are observed depending on the stimulating agent tested and the state of differentiation considered. The PMA-stimulated O2- production is rather low ie 100 and 20 times less in granulocytic HL-60 and monocyto-macrophagic U 937 cells than in PMN and MN respectively. Latex, zymosan and Con A stimulated responses are close to those of MN, in monocyte-macrophagic U 937 cells. In conclusion, these data show that during differentiation; 1), Cyt b plays a critical role in O2- production; 2), the pathways leading to NADPH oxidase activation are diversely modulated following phagocyte differentiation with IFN gamma and/or with RA.  相似文献   

13.
Adhesion of leukocytes to the endothelium is an essential event in inflammatory cell emigration from intravascular to extravascular compartment. While many mediators (e.g. cytokines) enhance cell adhesion through expression of adhesion molecules on endothelial cells the mechanism of this phenomenon is not known. In this study we examined the role of cAMP in mediation of the adhesion of monocytic cell line, U937 to human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with cholera toxin (10-500 ng/ml) for 4 hrs greatly enhanced the adhesiveness of HUVEC for U937 cells. The magnitude of adhesion stimulation produced by cholera toxin was comparable to that produced by the cytokines TNF alpha or IL-1 (2-3 folds). Upregulation of U937 cells adhesion to HUVEC was also achieved by short incubation (less than 1 hr) of HUVEC with cAMP elevating agents such as forskolin (10 microM), isoproterenol (0.3-30 microM), epinephrine (10-100 microM), norepinephrine (100 microM) as well as by endogenously added dibutyryl cAMP (0.05-2.0 mM). Dibutyryl cyclic GMP (0.05-2.0 mM) was ineffective in promoting adhesion. These data suggest that cAMP might be an important intracellular modulator of leukocyte adhesion to endothelium and therefore promoter of pro-inflammatory processes.  相似文献   

14.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its vasculoprotective effects are not completely understood. Because oxidative stress and endothelial cell injury play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits oxidative stress-induced endothelial apoptosis. We found that oxidized LDL and TNF-alpha elicited significant increases in caspase-3/7 activity in endothelial cells and cultured rat aortas, which were prevented by resveratrol pretreatment (10(-6)-10(-4) mol/l). The protective effect of resveratrol was attenuated by inhibition of glutathione peroxidase and heme oxygenase-1, suggesting a role for antioxidant systems in the antiapoptotic action of resveratrol. Indeed, resveratrol treatment protected cultured aortic segments and/or endothelial cells against increases in intracellular H(2)O(2) levels and H(2)O(2)-mediated apoptotic cell death induced by oxidative stressors (exogenous H(2)O(2), paraquat, and UV light). Resveratrol treatment also attenuated UV-induced DNA damage (comet assay). Resveratrol treatment upregulated the expression of glutathione peroxidase, catalase, and heme oxygenase-1 in cultured arteries, whereas it had no significant effect on the expression of SOD isoforms. Resveratrol also effectively scavenged H(2)O(2) in vitro. Thus resveratrol seems to increase vascular oxidative stress resistance by scavenging H(2)O(2) and preventing oxidative stress-induced endothelial cell death. We propose that the antioxidant and antiapoptotic effects of resveratrol, together with its previously described anti-inflammatory actions, are responsible, at least in part, for its cardioprotective effects.  相似文献   

15.
Klotho-mutated mice manifest multiple age-related disorders that are observed in humans. A recent study suggested that Klotho protein might function as an anti-aging hormone in mammals. Because it has been reported that apoptosis and senescence in vascular endothelial cells are closely related to the progression of atherosclerosis, we investigated Klotho's ability to interfere with apoptosis and cellular senescence in human umbilical vascular endothelial cells (HUVEC). Klotho overexpression decreased H(2)O(2)-induced apoptosis in COS-1 cells and Jurkat cells. Klotho protein also reduced H(2)O(2)- and etoposide-induced apoptosis in HUVEC. Caspase-3 and caspase-9 activity was lower in Klotho-treated HUVEC than in control cells. Senescence-associated beta-gal staining showed that Klotho protein interferes with H(2)O(2)-induced premature cellular senescence. The expression of p53 and p21 was lower in Klotho-treated cells. Our study suggests that Klotho acts as a humoral factor to reduce H(2)O(2)-induced apoptosis and cellular senescence in vascular cells.  相似文献   

16.
Fisetin is a natural flavonoid from fruits and vegetables that exhibits antioxidant, neurotrophic, anti-inflammatory, and anti-cancer effects in various disease models. Up-regulation of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell death, and therefore, plays a crucial role in cytoprotection in a variety of pathological models. In the present study, we investigated the effect of fisetin on the up-regulation of HO-1 in human umbilical vein endothelial cells (HUVECs). Small interfering RNA and pharmacological inhibitors of PKC-δ and p38 MAPK attenuated HO-1 induction in fisetin-stimulated HUVECs. Fisetin treatment resulted in significantly increased NF-E2-related factor 2 (Nrf2) nuclear translocation, and antioxidant response element (ARE)-luciferase activity, leading to up-regulation of HO-1 expression. In addition, fisetin pretreatment reduced hydrogen peroxide (H(2)O(2))-induced cell death, and this effect was reversed by ZnPP, an inhibitor of HO-1. In summary, these findings suggest that induction of HO-1 expression via Nrf2 activation may contribute to the cytoprotection exerted by fisetin against H(2)O(2) -induced oxidative stress in HUVECs.  相似文献   

17.
We have studied the relationships existing between delayed formation of H2O2 and activation of cytosolic phospholipase A2 (cPLA2), events respectively promoting toxicity or survival in U937 cells exposed to peroxynitrite. The outcome of an array of different approaches using phospholipase A2 inhibitors, or cPLA2 antisense oligonucleotides, as well as specific respiratory chain inhibitors and respiration-deficient cells led to the demonstration that H2O2 does not mediate toxicity by producing direct molecular damage. Rather, the effects of H2O2 were found to be upstream to the arachidonic acid (AA)-mediated cytoprotective signalling and in fact causally linked to inhibition of cPLA2. Thus, it appears that U937 cells exposed to nontoxic concentrations of peroxynitrite are nevertheless committed to death, which however is normally prevented by the activation of parallel pathways resulting in cPLA2-dependent release of AA. A rapid necrotic response, however, takes place when high concentrations of peroxynitrite promote formation of H2O2 at levels impairing the cPLA2 cytoprotective signalling.  相似文献   

18.
The cytolytic capacity of monocytes per se and stimulated monocytes has been documented to only a limited extent, and when observed has been ascribed to the generation of a variety of cytolytic molecular entities. In the present study we have examined de novo human monocyte-mediated tumor cytotoxicity and that induced by the agent 12-O-tetradecanoylphorbol-13-acetate (TPA). Cytolytic function was analyzed by reference to the release of [111In] oxine from two prelabeled tumor cell lines, K562 and U937, in a 16-hr assay in the presence of serum to more closely mimic in vivo circumstances. Observed cytolysis was clearly related to TPA concentration and effector cell number. Maximal cytolysis was obtained with TPA at 5 ng/ml, at which specific releases were 43% +/- 6 and 18% +/- 5 (mean +/- 1 SEM) at an effector cell to target cell (E:T) ratio of 2.5:1 and 65% +/- 6, and 41% +/- 12 at an E:T ratio of 20:1, for K562 and U937, respectively. In contrast, unstimulated monocytes expressed minimal cytolytic activity, or at best a low cytotoxic effect at high cellular ratios. When TPA-stimulated monocyte-mediated cytolysis was examined, catalase (2750 U/ml) inhibited K562 and U937 cytolysis by 92% and 84%, respectively; superoxide dismutase (300 U/ml) only inhibited cytotoxicity by 17% and 24%, respectively, implicating a central role of H2O2 rather than superoxide ions. Sodium azide (1 mM), an inhibitor of myeloperoxidase, did not diminish cytolysis; in contrast, it increased K562 and U937 cytolysis by 34% and 57%. This increased cytotoxicity was observed for K562 at low levels of cytotoxicity. These data tend to dismiss an essential role of the H2O2-halide-myeloperoxidase pathway of cytolysis. The OH scavengers, histidine (20 mM) and ethanol (40 mM), did not affect K562 killing; mannitol (50 mM), another OH scavenger, had only a slight inhibitory effect (23%). Finally, H2O2 generated by a glucose-glucose oxidase system directly mediated K562 killing and, to a lesser extent, U937 lysis. These results point strongly towards the role of: 1) a myeloperoxidase-independent mechanism of cytotoxicity, with 2) H2O2 as a key mediator of the cytolytic mechanism, and 3) a limited role of O2.- in synergy with H2O2 in the cytolytic activity of monocytes, and suggest that significant cytolytic function requires an inductive event.  相似文献   

19.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) increases synthesis of heat shock proteins in monocytes and U937 cells and protects these cells from thermal injury. We examined whether 1,25-(OH)2D3 would also modulate the susceptibility of U937 cells to H2O2-induced oxidative stress. Cell viability was assessed by trypan blue exclusion and [3H]thymidine incorporation into DNA. Prior incubation for 24 h with 1,25-(OH)2D3 (25 pM or higher) unexpectedly increased H2O2 toxicity. Since cellular Ca2+ may be a mediator of cell injury we investigated effects of altering extracellular Ca2+ ([Ca2+]e) on 1,25-(OH)2D3-enhanced H2O2 toxicity as well as effects of 1,25-(OH)2D3 and H2O2 on cytosolic free Ca2+ concentration ([Ca2+]f). Basal [Ca2+]f in medium containing 1.5 mM Ca as determined by fura-2 fluorescence was higher in 1,25-(OH)2D3-pretreated cells than control cells (137 versus 112 nM, P less than 0.005). H2O2 induced a rapid increase in [Ca2+]f (to greater than 300 nM) in both 1,25-(OH)2D3-treated and control cells, which was prevented by a reduction in [Ca2+]e to less than basal [Ca2+]f. The 1,25(OH)2D3-induced increase in H2O2 toxicity was also prevented by preincubation with 1,25-(OH)2D3 in Ca2+-free medium or by exposing the cells to H2O2 in the presence of EGTA. Preexposure of cells to 45 degrees C for 20 min, 4 h earlier, partially prevented the toxic effects of H2O2 particularly in 1,25-(OH)2D3-treated cells, even in the presence of physiological levels of [Ca2+]e. Thus 1,25-(OH)2D3 potentiates H2O2-induced injury probably by increasing cellular Ca2+ stores. The 1,25-(OH)2D3-induced amplification of the heat shock response likely represents a mechanism for counteracting the Ca2+-associated enhanced susceptibility to oxidative injury due to 1,25-(OH)2D3.  相似文献   

20.
Upon differentiation, U937 promonocytic cells gain the ability to release a large fraction of arachidonate esterified in phospholipids when stimulated, but the mechanism is unclear. U937 cells express group IV phospholipase A(2) (cPLA(2)), but neither its level nor its phosphorylation state increases upon differentiation. A group VI PLA(2) (iPLA(2)) that is sensitive to a bromoenol lactone inhibitor catalyzes arachidonate hydrolysis from phospholipids in some cells and facilitates arachidonate incorporation into glycerophosphocholine (GPC) lipids in others, but it is not known whether U937 cells express iPLA(2). We confirm that ionophore A23187 induces substantial [(3)H]arachidonate release from differentiated but not control U937 cells, and electrospray ionization mass spectrometric (ESI/MS) analyses indicate that differentiated cells contain a higher proportion of arachidonate-containing GPC species than control cells. U937 cells express iPLA(2) mRNA and activity, but iPLA(2) inhibition impairs neither [(3)H]arachidonate incorporation into nor release from U937 cells. Experiments with phosphatidate phosphohydrolase (PAPH) and phospholipase D (PLD) inhibitors coupled with ESI/MS analyses of PLD-PAPH products indicate that differentiated cells gain the ability to produce diacylglycerol (DAG) via PLD-PAPH. DAG promotes arachidonate release by a mechanism that does not require DAG hydrolysis, is largely independent of protein kinase C, and requires cPLA(2) activity. This may reflect DAG effects on cPLA(2) substrate state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号