首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of the gene encoding the cellulose-binding protein B (CBPB) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3,429 nucleotides. The deduced amino acid sequence of CBPB contained one module highly similar to a catalytic module of glycosyl hydrolase family 9 (GHF9), one module partially similar to a family 3 carbohydrate-binding module (CBM3), two linkers, one module similar to a CBM of cellulose-binding protein A (CBPA) from E. cellulosolvens 5, and one module almost identical to a cell wall-binding module (CWBM) of CBPA. The module similar to GHF9 showed CMCase activity, and the modules similar to CBM3 and CBM of CBPA bound to cellulose. Moreover, the module highly similar to CWBM of CBPA bound to the cell walls prepared from E. cellulosolvens 5. The amino acid sequence of CBPB had a significant homology (64.15% sequence identity) with that of CBPA. These results suggest that cbpA and cbpB genes descended from the same ancestral cellulase gene.  相似文献   

2.
The cellulose-binding protein A (CBPA) of Eubacterium cellulosolvens 5 is a modular enzyme comprised of a catalytic domain, a cellulose-binding domain and a cell wall-binding domain. Cellobiose-grown cells changed their adhesion ability to cellulose depending on the growth phase. On the other hand, carboxymethyl cellulose (CMC)-grown cells bound to cellulose regardless of their growth phase. The distribution of CBPA in the culture supernatant and cell fractions changed depending on the carbon source contained in the medium and growth phase. The cellobiose-grown cells harvested from the culture of the late stationary growth phase did not bind to cellulose, but their adhesion ability was recovered by treatment with recombinant CBPA. Moreover, cellobiose-grown cells harvested from the culture of an early exponential growth phase bound to cellulose, but their adhesion ability was inhibited by treatment with anti-CBPA antiserum. CBPA rapidly decreased the viscosity of CMC, indicating that CBPA was endoglucanase. The results obtained in this study indicate that CBPA plays an important role in the adhesion of E. cellulosolvens 5 cells to cellulose.  相似文献   

3.
Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membranes, respectively, of strain S85 and adhesion-defective mutant strains in conjunction with mass spectrometry analysis of tryptic peptides was used to identify proteins with roles in adhesion to and digestion of cellulose. Examination of the binding to cellulose of detergent-solubilized outer membrane proteins from S85 and mutant strains revealed six proteins in S85 that bound to crystalline cellulose that were absent from the mutants and five proteins in Ad1 that bound to acid-swollen cellulose that were absent from Ad4. Twenty-five proteins from the outer membrane fraction of cellulose-grown F. succinogenes were identified by 2-DE, and 16 of these were up-regulated by growth on cellulose compared to results with growth on glucose. A protein identified as a Cl-stimulated cellobiosidase was repressed in S85 cells growing on glucose and further repressed in the mutants, while a cellulose-binding protein identified as pilin was unchanged in S85 grown on glucose but was not produced by the mutants. The candidate differential cellulose binding proteins of S85 and the mutants and the proteins induced by growth of S85 on cellulose provide the basis for dissecting essential components of the cellulase system of F. succinogenes.  相似文献   

4.
We examined the binding of polyomavirus large (L-T)-, middle (M-T)-, and small-tumor antigens to DNA cellulose. At pH 6.0, the majority of L-T bound to calf thymus DNA cellulose, while little or no small tumor antigen was retained under these conditions. Unexpectedly, a small but reproducible proportion of M-T bound to both native and denatured DNA cellulose. M-T encoded by polyomavirus mutant dl 8, which expressed shortened L-T and M-T, bound to DNA, indicating that the deleted sequences are not required for DNA binding. Also, M-T from transformed BMT-1 rat cells, which synthesize exclusively this polyomavirus tumor antigen, bound to DNA, indicating that its binding is not due to association with other polyomavirus-encoded proteins. Using the DNA fragment immunoassay, we found that, under conditions in which L-T bound specifically to DNA fragments containing viral regulatory sequences, no viral DNA fragments were bound by M-T. The existence of distinct subpopulations of M-T that differ in their DNA-binding properties was indicated by rebinding experiments in which M-T that had bound to DNA cellulose rebound very efficiently, while that which had not been originally retained by DNA cellulose rebound poorly. Furthermore, the M-T-pp60 c-src complex did not bind to DNA cellulose. These data suggest that polyomavirus M-T is heterogeneous, consisting of populations of molecules that differ in their interactions with DNA cellulose.  相似文献   

5.
The complex of alpha and beta chains of HLA-D membrane antigens has been isolated from a lymphoblastoid homozygous B cell line, H2LCL (HLA-A3,3; B7,7; Dw2,2; DR2,2; MT1,1; DC1,1; MB1,1), by an exclusively chemical two-step procedure and characterized by electrophoresis as well as isoelectric focusing in polyacrylamide gel. Cells were gained using long term cultivation in large scale, the crude membrane by differential centrifugation. The proteins of the crude membrane were then solubilized in NP-40, pH 5.0. The first purification step for HLA-D antigens consisted in an ion-exchange chromatography on carboxymethyl cellulose using the solubilization buffer. By this procedure the complex of proteins with relative molecular masses of Mr approximately 34 000 and Mr approximately 29 000 was in a high percentage not bound to the carboxymethyl cellulose. The bound fraction contained the HLA-A, -B and -C antigens and a component with Mr approximately 31 000 corresponding to the well known Ii-fraction. The bound proteins could be recovered from the column by a sodium chloride gradient. The proteins not bound to the carboxymethyl cellulose were precipitated with acetone, dissolved, dialysed against SDS buffer, pH 7.2 and then submitted to the second purification step, the Sephacryl S-300 chromatography. By this procedure the corresponding complex could be further separated from higher and lower molecular proteins. The complex was used as the starting material for the separation of alpha and beta chains. Amino-acid sequences established of the isolated chains have already been communicated.  相似文献   

6.
Cellobiohydrolase I (CBHI) is the major cellulase of Trichoderma reesei. The enzyme contains a discrete cellulose-binding domain (CBD), which increases its binding and activity on crystalline cellulose. We studied cellulase-cellulose interactions using site-directed mutagenesis on the basis of the three-dimensional structure of the CBD of CBHI. Three mutant proteins which have earlier been produced in Saccharomyces cerevisiae were expressed in the native host organism. The data presented here support the hypothesis that a conserved tyrosine (Y492) located on the flat and more hydrophilic surface of the CBD is essential for the functionality. The data also suggest that the more hydrophobic surface is not directly involved in the CBD function. The pH dependence of the adsorption revealed that electrostatic repulsion between the bound proteins may also control the adsorption. The binding of CBHI to cellulose was significantly affected by high ionic strength suggesting that the interaction with cellulose includes a hydrophobic effect. High ionic strength increased the activity of the isolated core and of mutant proteins on crystalline cellulose, indicating that once productively bound, the enzymes are capable of solubilizing cellulose even with a mutagenized or with no CBD. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Immune-active substance of Staphylococcus aureus, cell-bound protein A (CBPA), enhances the acetylcholine- or hyperpotassium (K+) Krebs solution-evoked excitation in Taenia coli smooth muscles. CBPA increases caffeine- and carbachole-evoked Ca2+ signals in smooth muscle cells suspension, loaded with indo-1, and also caffeine- and acetylcholine-evoked contraction in smooth muscles slices. Against a background of CBPA-suppressed action of sodium nitroprusside, ATP evokes the membrane depolarization. CBPA in small concentrations potentiates ATPase (Mg2+,Ca2+-; Mg2+- and Mg2+- in the presence of EGTA) activity of actomyosin in the smooth muscles.  相似文献   

8.
Bifunctional fusion proteins consisting of organophosphate hydrolase (OPH) moieties linked to a Clostridium-derived cellulose-binding domain (CBD) were shown to be highly effective in degrading organophosphate nerve agents, enabling purification and immobilization onto different cellulose materials in essentially a single step. Enzyme kinetics studies were performed for the CBD-OPH fusions using paraoxon as the substrate. The kinetics values of the unbound fusion enzymes were similar to OPH with a modest increase in K(m). Immobilization of the enzymes onto microcrystalline cellulose resulted in a further increase in the K(m) values of approximately twofold. The pH profile of the cellulose-immobilized enzymes was also only minimally affected. The CBD-OPH fusion proteins could be immobilized onto a variety of cellulose matrixes, and retained up to 85% of their original activity for 30 days. The durability of the bound fusions increased with the amount of Avicel used, suggesting that protein/cellulose interactions may have a dramatic stabilizing effect. Repeated hydrolysis of paraoxon was achieved in an immobilized enzyme reactor with 100% degradation efficiency over 45 days. These fusion proteins should prove to be invaluable tools for the development of low cost, OPH-based cellulose materials for the simultaneous adsorption and degradation of stored or spilled organophosphate wastes.  相似文献   

9.
A method for the production of highly specific polyclonal antibodies   总被引:7,自引:0,他引:7  
Two polyclonal antibodies directed against paramyosin and tropomyosin from Owenia fusiformis (a marine polychete annelid) were obtained using a new method of immunization. After purification by two-dimensional gel electrophoresis, proteins were transferred onto a nitrocellulose sheet using the Western blot technique. The proteins bound to their cellulose support were injected into rabbits without Freund's adjuvant and without solubilization of nitrocellulose with dimethyl sulfoxide. Highly specific polyclonal antibodies were generated.  相似文献   

10.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

11.
The nucleotide sequence of the gene encoding the cellulose-binding protein A (CBPA) of Eubacterium cellulosolvens 5 was determined. The gene consists of an open reading frame of 3453 nucleotides and encodes a protein of 1151 amino acids with a molecular mass of 126408 Da. The deduced amino acid sequence of CBPA contained one domain highly similar to a catalytic domain of glycosyl hydrolases belonging to family 9, two linker-like domains and four domains of unknown function. Among the four domains of unknown function, the domains 1 and 2 region had significant homology in amino acid sequence with the cellulose-binding domains in the family 9 glycosyl hydrolases. The cloned gene was inserted into an expression vector, pBAD-TOPO, and expressed in Escherichia coli as a fused protein. The fused protein was detected by immunoblotting using antiserum against CBPA.  相似文献   

12.
The cellulosome is a complex of cellulosomal proteins bound to scaffolding proteins. This complex is considered the most efficient system for cellulose degradation. Clostridium cellulovorans, which is known to produce cellulosomes, changes the composition of its cellulosomes depending on the growth substrates. However, studies have investigated only cellulosomal proteins; profile changes in noncellulosomal proteins have rarely been examined. In this study, we performed a quantitative proteome analysis of the whole exoproteome of C. cellulovorans, including cellulosomal and noncellulosomal proteins, to illustrate how various substrates are efficiently degraded. C. cellulovorans was cultured with cellobiose, xylan, pectin, or phosphoric acid-swollen cellulose (PASC) as the sole carbon source. PASC was used as a cellulose substrate for more accurate quantitative analysis. Using an isobaric tag method and a liquid chromatography mass spectrometer equipped with a long monolithic silica capillary column, 639 proteins were identified and quantified in all 4 samples. Among these, 79 proteins were involved in saccharification, including 35 cellulosomal and 44 noncellulosomal proteins. We compared protein abundance by spectral count and found that cellulosomal proteins were more abundant than noncellulosomal proteins. Next, we focused on the fold change of the proteins depending on the growth substrates. Drastic changes were observed mainly among the noncellulosomal proteins. These results indicate that cellulosomal proteins were primarily produced to efficiently degrade any substrate and that noncellulosomal proteins were specifically produced to optimize the degradation of a particular substrate. This study highlights the importance of noncellulosomal proteins as well as cellulosomes for the efficient degradation of various substrates.  相似文献   

13.
The differences of serum proteins between mature male and female rainbow trout (Salmo gairdneri) and chum salmon (Oncorhyncus keta) were studied electrophoretically and immunologically. Female-specific serum proteins were seen only in females of both species, in the same region as beta-globulin on cellulose acetate membrane electrophoresis and agarose gel immunoelectrophoresis. One of the female-specific serum proteins bound radioactive iron. This protein was partially purified by precipitation by lowering the ionic strength of the serum. The purified material also showed the iron-binding property.  相似文献   

14.
Attempts were made to separate and characterize cellulose-binding proteins (CBPs) from both the culture supernatant and cell lysate of Eubacterium cellulosolvens 5. Once the CBPs were bound to Avicel cellulose, they were then effectively eluted with the solution containing 3.2 or 5% sodium dodecyl sulfate (SDS), but not eluted with the solution containing various kinds of carbohydrates and reagents. Namely, CBPs in both the culture supernatant and cell lysate of the bacterium bound tightly and strongly to cellulose. The SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the eluted CBPs indicated that the CBPs contained the two major proteins having the molecular weights of approximately 160 and 84 kilodaltons (kDa) and one sub-major protein having a molecular weight of approximately 140 kDa. Zymogram analysis after the SDS-PAGE of the eluted CBPs showed that two proteins exhibited the highest levels of carboxymethyl cellulase (CMCase) activity corresponding to the molecular weights of approximately 160 and 90 kDa. A major protein having the molecular weight of approximately 160 kDa exhibited a distinct CMCase activity and was designated as CBPE1. Western immunoblot analysis indicated that the proteins prepared from 16 representative strains of rumen bacteria did not cross-react with rabbit antiserum raised against CBPE1. Thus, CBPE1 may be a unique CBP that plays an important role in the adhesion of the bacterium to cellulose.  相似文献   

15.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5′-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

16.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

17.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

18.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

19.
Cellulose-binding modules (CBMs) of two extracellular matrix proteins, St15 and ShD, from the slime mold Dictyostelium discoideum were expressed in Escherichia coli. The expressed proteins were purified to > 98% purity by extracting inclusion bodies at pH 11.5 and refolding proteins at pH 7.5. The two refolded CBMs bound tightly to amorphous phosphoric acid swollen cellulose (PASC), but had a low affinity toward xylan. Neither protein exhibited cellulase activity. St15, the stalk-specific protein, had fourfold higher binding affinity toward microcrystalline cellulose (Avicel) than the sheath-specific ShD CBM. St15 is unusual in that it consists of a solitary CBM homologous to family IIa CBMs. Sequence analysis of ShD reveals three putative domains containing: (a) a C-terminal CBM homologous to family IIb CBMs; (b) a Pro/Thr-rich linker domain; and (c) a N-terminal Cys-rich domain. The biological functions and potential role of St15 and ShD in building extracellular matrices during D. discoideum development are discussed.  相似文献   

20.
Caldicellulosiruptor bescii efficiently degrades cellulose, xylan, and native grasses at high temperatures above 70°C under anaerobic conditions. C. bescii extracellularly secretes multidomain glycoside hydrolases along with proteins of unknown function. In this study, we analyzed the C. bescii proteins that bind to the cell walls of timothy grass by using mass spectrometry, and we identified four noncatalytic plant cell wall-binding proteins (PWBPs) with high pI values (9.2 to 9.6). A search of a conserved domain database showed that these proteins possess a common domain related to solute-binding proteins. In addition, 12 genes encoding PWBP-like proteins were detected in the C. bescii genomic sequence. To analyze the binding properties of PWBPs, recombinant PWBP57 and PWBP65, expressed in Escherichia coli, were prepared. The PWBPs displayed a wide range of binding specificities: they bound to cellulose, lichenan, xylan, arabinoxylan, glucuronoxylan, mannan, glucomannan, pectin, oligosaccharides, and the cell walls of timothy grass. The proteins showed the highest binding affinity for the plant cell wall, with association constant (Ka) values of 5.2 × 106 to 44 × 106 M−1 among the insoluble polysaccharides tested, as measured using depletion binding isotherms. Affinity gel electrophoresis demonstrated that the proteins bound to the acidic polymer pectin most strongly among the soluble polysaccharides tested. Fluorescence microscopic analysis showed that the proteins bound preferentially to the cell wall in a section of grass leaf. Binding of noncatalytic PWBPs with high pI values might be necessary for efficient utilization of polysaccharides by C. bescii at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号