首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Amplification of immunological signals with catalyzed reporter deposition (CARD) allows improved detection of scarce tissue antigens in light and electron microscopy. The technique takes advantage of the oxidation ability of horseradish peroxidase (HRP), in the presence of hydrogen peroxide, to yield the accumulation of one of its specific reporter-tagged substrates. This immunocytochemical approach continues to be improved by the introduction of new reporter molecules tagged to tyramine or to other HRP substrates. In this study we introduced a novel HRP substrate tagged to Nanogold particles. The amplification protocol is based on the application of a specific primary antibody, a biotinylated secondary antibody, streptavidin-HRP, and an HRP substrate coupled to Nanogold, followed by silver intensification. In addition to amplification of immunological signals of high resolution, direct accumulation of Nanogold particles at target sites by enzymatic activity of HRP improves the efficiency of the technique compared to other amplification protocols. Moreover, this approach combines the CARD amplification potentials with the ultrasmall gold probe and the silver intensification method. Immunolabeling obtained by light and electron microscopy, as well as immunodot assay using this new amplification strategy, appear to be highly sensitive, specific, and of enhanced intensity.  相似文献   

2.
Signal amplification in flow cytometry using biotin tyramine.   总被引:2,自引:0,他引:2  
BACKGROUND: Catalysed reporter deposition (CARD) has been successfully used as a means of signal amplification in solid-phase immunoassays. The procedure relies on the use of horseradish peroxidase (HRP)-conjugated reagents--normally antibodies-in conjunction with substituted phenolic compounds such as biotin tyramine. The HRP catalyses deposition of biotin tyramine around the site of enzyme activity, and streptavidin-HRP can then be added to generate an amplified HRP signal. The possibility of using this technique for solution-phase amplifications has been suggested but not yet demonstrated. METHODS: This paper describes the application of CARD to signal enhancement in flow cytometry. The specific examples described here are those of anti-human CD4 and anti-human CD36 antibodies binding to either human lymphocytes or mixed mononuclear cells. RESULTS: Optimum biotin tyramine concentrations were evaluated, and a fivefold increase in signal was observed over standard detection of the anti-human CD4 antibody with anti-mouse-fluorescein isothiocyanate (FITC). In the example using the anti-CD36 antibody, the biotin tyramine treatment was repeated, resulting in an additional 2.5-fold signal amplification. CONCLUSIONS: The technique described in this report provides a method of amplifying the signals achieved by standard flow cytometry detection reagents.  相似文献   

3.
The needs to precisely assign macromolecules to specific locations and domains within tissues and cells and to reveal antigens which are present in low or even in trace amounts, led to the elaboration of a wide spectrum of immunocytochemical amplification procedures. These arise from the successive improvements of tissue preparation techniques, of antigen retrieval procedures and of immunological or non-immunological detection systems. Improvement of detection systems may be the most active in the development of amplification techniques. Since the early work of Coons, in which by the introduction of the indirect technique has started amplifying the signal, different systems have succeeded in increasing the sensitivity of antigens detection. Indeed, amplification techniques such as the multiple antibody layers, the multiple bridges, the enzyme complexes, the avidin-biotin, the silver intensification, and the numerous variations and combinations among these have increased the sensitivity for the detection of scarce tissue antigens. However, as shown by the recent progress carried out with new approaches such as the catalyzed reporter deposition (CARD) and the enhanced polymer one-step staining (EPOS), more efficient methods are still needed. In electron microscopy, few techniques have reached the resolution afforded by the post-embedding immunogold approach. In spite of this and in order to further increase its sensitivity, new probes and novel approaches are allowing combination of the gold marker with the amplification capacity of enzymes afforded by the CARD technique. Immunogold amplification strategies, such as the multiple incubations with the primary antibody and the use of an anti-protein A antibody have also led to enhanced signals displaying the advantages in terms of resolution and possibilities of quantification inherent to the colloidal gold marker.  相似文献   

4.
A novel fluorescence in situ hybridisation (FISH) method is presented that allows the combination of epifluorescence and scanning electron microscopy (SEM) to identify single microbial cells. First, the rRNA of whole cells is hybridised with horseradish peroxidase-labelled oligonucleotide probes and this is followed by catalysed reporter deposition (CARD) of biotinylated tyramides. This facilitates an amplification of binding sites for streptavidin conjugates covalently labelled with both fluorophores and nanogold particles. The deposition of Alexa Fluor 488 fluoro-nanogold–streptavidin conjugates was confirmed via epifluorescence microscopy and cells could be quantified in a similar way to standard CARD–FISH approaches. To detect cells by SEM, an autometallographic enhancement of the nanogold particles was essential, and allowed the in situ localisation of the target organisms at resolutions beyond light microscopy. Energy dispersive X-ray spectroscopy (EDS) was used to verify the effects of CARD and autometallography on gold deposition in target cells.  相似文献   

5.
In situ hybridization (ISH) has proved to be an invaluable molecular tool in research and diagnosis to visualize nucleic acids in their cellular environment. However, its applicability can be limited by its restricted detection sensitivity. During the past 10 years, several strategies have been developed to improve the threshold levels of nucleic acid detection in situ by amplification of either target nucleic acid sequences before ISH (e.g., in situ PCR) or the detection signals after the hybridization procedures. Here we outline the principles of tyramide signal amplification using the catalyzed reporter deposition (CARD) technique, present practical suggestions to efficiently enhance the sensitivity of ISH with CARD, and discuss some applications and possible future directions of in situ nucleic acid detection using such an amplification strategy.  相似文献   

6.
Some 2-(2-styryl)-benzothiazole derivatives have been synthesized as novel fluorescent substrates for the localization of peroxidase activity. Excellent localization, high staining sensitivity and exceptionally low background staining were achieved by optimizing the choice of substrate. Multiple step-by-step anchoring of enzymatically-activated individual substrate molecules to surrounding nucleophiles, related to the catalysed reporter deposition (CARD) technique, is discussed. In contrast to tyramine conjugates, as employed in the CARD technique, the separation between reporting and anchoring function is eliminated, thus yielding a new fluorochrome with altered fluorescence properties after enzymatic cross-linking. (E)-2-(2-[4-hydroxyphenyl] vinyl)-3-ethyl-1,3-benzothiazolium iodide has been found to the best substrate so far. This was demonstrated in histochemical applications for the localization of endogenous and immunobound peroxidase activity using fixed cryostat, paraffin or semi-thin Epon sections. The specific final reaction product is efficiently excitable over a wide spectrum from green to violet, providing an outstanding sensitive localization of sites of enzymatic activity with high photo stability. In a comparative study with the Alexa Fluor 546-tyramine conjugate, endogenous and immunobound peroxidase activity was visualized and the results compared using an epi-fluorescence confocal laser scanning microscope. The novel substrate provided an improved specificity and very low background staining whereas the Alexa Fluor-tyramide exhibited a strong overall background staining. FITC-labelled secondary antibodies also yielded very low background staining but the staining was less specific compared with the biotin-based ABC amplification systems labelled with the selected substrate or the Alexa-tyramide. In conclusion, multiple fluorochrome generation close to sites of peroxidase activity, by enzymatic cross-linking of styrene-related substrates, is a promising alternative to the fluorochrome-labelled tyramine ('tyramide') deposition technique.  相似文献   

7.
Fluorescent labeling of immuno-bound or endogenous peroxidase (PO) activity has been achieved to date by means of phenol derivatives with a low substitution degree. Here it is demonstrated that N,N-dialkylamino-styryl dyes can also act as fluorescent substrates of PO. They undergo enzymatically cross-linking reactions to surrounding cell constituents in an analogous manner thus permitting highly fluorescent and permanent labeling. This approach is narrowly related to the catalyzed reporter deposition (CARD) technique based on tyramine conjugates and the recently described catalytic cross-linking approach of hydroxystyryl derivatives. The substitution patterns for optimal cross-linking capability and the spectral properties of obtained specific reaction products were studied using an iterative semi-empirical approach. The best staining performance is achieved with N,N-dimethylaminoaryl derivatives. Their N,N-dialkyl homologues as well as the primary aryl amine pendants failed as PO substrates. Due to their basic character, novel substrates occasionally tend to unspecific interactions (staining nuclei, mast cells, or keratin). Centering this side specificity and repressing the staining capability of PO was achieved by chemical modification of the respective dye leading to new specific probes for keratin and cytoplasmatic RNA. In conclusion, catalytic cross-linking of heterocyclic 4-N,N-dimethylamino-styryl dyes represents a promising approach for the permanent fluorescent staining of PO in fixed cells and tissues, complementing the CARD technique. In contrast to CARD-related approaches, new substrates are characterized by a broad excitation and emission range of fluorescence and the outstanding spatial resolution of specific fluorescence signaling known so far from their 4-hydroxystyryl analogues. They currently represent the smallest fluorescent substrates of PO. Histochemical and immuno-histochemical applications share several outstanding features: High detection sensitivity, spatial resolution of fluorescence signaling, and photo stability. 4-N,N-dimethylamino-styryl substrates are compatible with their phenol and phenol-ester analogues. Their combination facilitates the trichromatic immuno-histochemical demonstration of three different targets simultaneously at one excitation wavelength in a conventional epi-fluorescence microscope.  相似文献   

8.
 We report an optimized in situ hybridization (ISH) protocol with a rapid signal amplification procedure based on catalyzed reporter deposition (CARD) to increase the sensitivity of non-isotopic mRNA ISH on formaldehyde-fixed and paraffin-embedded tissue. The CARD method is based on the deposition of haptenized tyramide molecules in the vicinity of hybridized probes catalyzed by horseradish peroxidase. Commercially available and newly synthesized haptenized tyramides, including digoxigenin-, biotin-, di- and trinitrophenyl- as well as fluorescein-tyramide, were compared. The haptenized tyramides were visualized using peroxidase conjugated anti-hapten antibodies followed by the diaminobenzidine reaction. As a test system, we applied digoxigenin-labeled oligonucleotides to detect insulin and vasoactive intestinal polypeptide mRNA in pancreatic endocrine tumors and liver metastases. Our results indicate that specificity, sensitivity, and applicability of oligonucleotide mRNA ISH can be significantly improved by using chemically digoxigenin-labeled oligonucleotide probes and signal amplification by CARD. Furthermore, all tested tyramides provided approximately equal amplification efficiency. In conclusion, CARD signal amplification should further promote mRNA ISH studies on paraffin-embedded tissues and allow for multiple-target nucleic acid detection in situ. Accepted: 1 July 1998  相似文献   

9.
Progress has been made in improving the immunohistochemical detection of antigens for imaging and flow cytometry. We report the synthesis of a novel fluorescent horseradish peroxidase substrate, Cy3.29-tyramide, and its application in an enzyme-based signal amplification system, catalyzed reporter deposition (CARD). The catalyzed deposition of Cy3.29-tyramide was used to detect cell surface markers such as CD8 and CD25 on tonsil tissue and human lymphocytes. We compared the fluorescence CARD method to standard indirect immunofluorescence detection methods and found that an amplification of up to 15-fold was possible with CARD. The detection of the intracellular protein myosin II in fibroblastic cells and rabbit serum proteins blotted onto nitrocellulose was also improved. Thus, fluorescent CARD is a simple modification that can be made to standard immunofluorescence staining protocols to enhance significantly the detection of antigens.  相似文献   

10.
The aims of this study of head and neck tissue samples were to develop an immunohistochemical protocol based on the catalysed reporter deposition (CARD) technique to enhance staining results for use in automated true colour image analysis, to assess the reproducibility of systematic tissue sampling in the angiogenic hot spot selection, and quantification of microvessel density (MVD) and other vessel characteristics. The latter data were compared between six metastasised tongue squamous cell carcinomas, vs. four non-metastasised. In comparison to the standard immunohistochemical protocol with anti-CD34 antibodies, CARD amplification resulted in both more intensely stained and larger numbers of vessels. Averaging the 10 most vascularised fields of the 40 to 60 systematically sampled fields in a tissue section resulted in an overall acceptable interobserver reproducibility for most assessed vessel parameters (r> or =0.76 and p< or =0.01). The percentage vessels with diameter <5 microm was significantly higher in the non-metastasised tongue carcinomas (p=0.02). However, for a number of tumours the effect of tissue sampling was significant.We conclude that CARD amplification is needed for reliable segmentation of vessels by image analysis systems, and that tumour heterogeneity is a limiting factor for all procedures in which tumour vascularity is assessed in a single tissue section.Figures on http://www.esacp.org/acp/2001/22-4/hannen.htm.  相似文献   

11.
Lau WK  Chiu SK  Ma JT  Tzeng CM 《BioTechniques》2002,33(3):564, 566-564, 570
The application of microarray analysis to gene expression from limited tissue samples has not been very successful because of the poor signal qualityfrom the genes expressed at low levels. Here we discussed the use of catalyzed reporter deposition (CARD) technology to amplify signals from limited RNA samples on nylon membrane cDNA microarray. When the input RNA level was greater than 10 microg, the genes expressed at high levels did not amplify in proportion to those expressed at low levels. Compared to conventional colorimetric detection, the CARD method requires less than 10% of the total RNA used for amplification of signal displayed onto a nylon membrane cDNA microarray. Total RNA (5-10 microg), as one can extract from a limited amount of specimen, was determined to produce a linear correlation between the colorimetric detection and CARD methods. Beyond this range, it can cause a nonlinear amplification of highly expressed and low-abundance genes. These results suggest that when amplification is needed for any applications using the CARD method, including DNA microarray experiments, precaution has to be taken in the amount of RNA used to avoid skew amplification and thus misleading conclusions.  相似文献   

12.
Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

13.
Summary Video-enhanced microscopy allows the detection and tracking of individual colloidal gold particles. The analysis of immunogold reactions can also be conducted as a function of time and thus allows the study of dynamic events in living cells. The direct visualization in real time is reported of the reaction of immunogold particles with a surface antigen. This time-resolved immunocytochemistry was achieved by continuous observation of living cells infected with a virus (respiratory syncytial virus) following their incubation with colloidal gold (30 nm) coated with antiviral antibodies. The progress of the immunoreaction was visualized as a sequential deposition of individual gold granules on the viral particles until saturation was reached after 60 min. Binding of colloidal gold was an irreversible event as no elution or dislocation of surface-bound granules took place. Comparative imaging of colloidal gold particles by electron microscopy and by video microscopy demonstrated that the video-imaged immunoreactions represented events involving single gold particles; their signal was sometimes clearly enhanced by secondary depositions taking place in close proximity, i.e. at a distance below the lateral resolution of the light microscope. Our experiments demonstrate that video-enhanced microscopy provides a powerful tool for studying antibody-antigen reactions with a high spatial and temporal resolution.  相似文献   

14.
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.  相似文献   

15.
GFP-tagging is widely used as a molecular tool to localize and visualize the trafficking of proteins in cells but interpretation is frequently limited by the low resolution afforded by fluorescence light microscopy. Although complementary thin-section immunogold electron microscopic techniques go some way in aiding interpretation, major limitations, such as relatively poor structural preservation of membrane systems, low labelling efficiency and the two-dimensional nature of the images, remain. Here we demonstrate that the electron microscopic technique freeze-fracture replica immunogold labelling overcomes these disadvantages and can be used to define, at high resolution, the precise location of GFP-tagged proteins in specific membrane systems and organelles of the cell. Moreover, this technique provides information on the location of the protein within the phospholipid bilayer, potentially providing insight into mis-orientation of tagged proteins compared to their untagged counterparts. Complementary application of the freeze-fracture replica immunogold labelling technique alongside conventional fluorescence microscopy is seen as a novel and valuable approach to verification, clarification and extension of the data obtained using fluorescent-tagged proteins. The application of this approach is illustrated by new findings on PAT-family proteins tagged with GFP transfected into fibroblasts from patients with Niemann-Pick type C disease.  相似文献   

16.
The immunogold technique has been used in electron microscopy to detect cytoplasmic and extracellular antigens by postembedding techniques. It has also been used to detect plasma-membrane-associated molecules on suspended cells and, recently, to visualise cell surface antigens in ultrathin sections of Lowicryl embedded specimens. In the present study, cell surface antigens of rat kidney and human skin were identified in tissue sections by using pre-embedding immunogold labeling. Brush border microvillar antigens and dermal lymphocyte antigens both bound numerous gold particles. The immunogold staining described here has the advantage over immunoperoxidase procedures that it is not subject to diffusion or reabsorption artifacts, and allows estimation of the antigen density on labeled cells. Furthermore, this pre-embedding immunogold technique is ideally suited to detecting cell surface-associated antigens since it preserves antigenicity, allows gold particle penetration and enhances cell membrane profiles.  相似文献   

17.
The immunogold technique has been used in electron microscopy to detect cytoplasmic and extracellular antigens by postembedding techniques. It has also been used to detect plasma-membrane-associated molecules on suspended cells and, recently, to visualize cell surface antigens in ultrathin sections of Lowicryl embedded specimens. In the present study, cell surface antigens of rat kidney and human skin were identified in tissue sections by using pre-embedding immunogold labeling. Brush border microvillar antigens and dermal lymphocyte antigens both bound numerous gold particles. The immunogold staining described here has the advantage over immunoperoxidase procedures that is not subject to diffusion or reabsorption artifacts, and allows estimation of the antigen density on labeled cells. Furthermore, this pre-embedding immunogold technique is ideally suited to detecting cell surface-associated antigens since it preserves antigenicity, allows gold particle penetration and enhances cell membrane profiles.  相似文献   

18.
Although the tyramine amplification technique to enhance sensitivity in immunohistochemistry has been described in numerous methodological papers, it has not yet gained access to diagnostic immunohistochemistry. This is mainly due to problems and pitfalls occurring in adaptation of this method to routine application.In this study a monoclonal antibody and a polyclonal antiserum (pan-cytokeratin and anti-myoglobin) were tested in tissues with different amounts of epitopes, using a checkerboard table and testing a total of 133 different dilution combinations of both the tyramide solution and the primary antibodies.The specific tissue investigated, i.e. the amount of accessable epitope to be detected and the applied concentration of the tyramide solution mainly influenced the staining reaction. Several pitfalls such as an uneven distribution of the staining or dramatic overstaining (paradoxical overstaining) must be considered to achieve optimal results.In conclusion, our data confirm methodological studies that the tyramine amplification technique is a powerful method to enhance immunohistochemical sensitivity. However, for reliable daily practice several pitfalls of the technique have to be circumvented.  相似文献   

19.
Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique samples are frozen fractured and replicated with platinum-carbon as in standard freeze fracture and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed.  相似文献   

20.
We report a modification of the avidin-biotin-peroxidase complex (ABC) technique for the light and electron microscopic detection of antigens in tissue sections. An immunological approach was used instead of the DAB reaction to reveal ABC bound to antigen-antibody complexes. Affinity-purified polyclonal antibodies against horseradish peroxidase were complexed to particles of colloidal gold and applied for reaction with the horseradish peroxidase molecules of the ABC. For light microscopic immunolabeling, the signal produced by the anti-horseradish peroxidase antibody-gold complex required silver intensification. The ABC immunogold reaction as compared with the standard ABC technique, in particular with silver intensification of the DAB reaction product, provided superior resolution in paraffin sections. Furthermore, section pre-treatment to block endogenous peroxidase activity could be omitted and no potentially hazardous substrate was used. The ABC immunogold reaction was successfully applied for electron microscopic immunolabeling on Lowicryl K4M thin sections. We propose that the ABC immunogold reaction is a useful alternative to the standard ABC technique and can be equally well applied to light and electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号