首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lee JY  Lee HJ  Kim MR  Myung PK  Sok DE 《Neurochemical research》1999,24(12):1577-1583
Brain glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD)-catalyzed conversion of amphiphilic form of Zn2+-glycerophosphocholine cholinephosphodiesterase (Amp-GPC PDE) into hydrophilic form was investigated in the presence of natural amphiphiles. Monoacylglycerols enhanced considerably the conversion by GPI-PLD of Amp-GPC PDE to hydrophilic form, with the enhancing effect of monoacylglycerols being dependent on the size of acyl group (C8–C18). Whereas the maximal enhancement of GPI-PLD action was the greatest with monodecanoylglycerol, the concentration (EC50) required to achieve 50% maximal effect was the smallest for monomyristoyl- or monopalmitoylglycerol. In addition, monolaurylglycerol or its alkyl analogue, monododecylglycerol, showed a remarkable decrease in enhancing effect at high concentrations (>1 mM). Presence of double bond in acyl chain, as exemplified by monooleoylglycerol or mono-11-eicosenoin, further enhanced the conversion by GPI-PLD. Meanwhile, lysophosphatidylcholine (IC50, 25 M) and phosphatidic acid (IC50, > 100 M), ionic amphiphiles, inhibited the GPI-PLD activity, which was determined in the presence of monooleoylglycerol as a detergent. From these results, it is suggested that the activity of GPI-PLD in vivo system may be regulated by natural amphiphiles.  相似文献   

2.
Cardiolipin (CL) synthetase from Staphylococcus aureus catalyzes the complete conversion of two molecules of phosphatidylglycerol (PG) to one molecule of CL and one molecule of glycerol. The fatty acids and phosphates of the two PG molecules can be quantitatively recovered in the CL. The enzyme is membrane-bound, shows a linear relationship with the product formed between 10 and 125 mug of membrane protein, has a pH optimum at 4.4, a temperature optimum between 37 and 45 C, a K(m) for PG of 2.1 x 10(-4)m, a V(max) of 200 nmoles of CL per min per mg of membrane protein, and does not require monovalent or divalent metals for activity. The enzyme has no nucleotide requirement and is not affected by prolonged dialysis, and treatment of the enzyme with charcoal has no effect on its activity. The enzyme has no phosphomonoesterase or phosphodiesterase activity, does not act on CL, is specific for PG, and CL and glycerol are the sole products of its activity. Other lipids do not stimulate or inhibit its activity. The enzyme is inhibited by organic solvents and some detergents. There is sufficient CL synthetase activity to account for CL synthesis during exponential growth. Inhibition of CL hydrolysis during growth results in an increase in CL that is balanced by a loss of PG. The activity of CL synthetase is not affected by cytidine diphosphate diglyceride but is inhibited competitively by the product, CL.  相似文献   

3.
In this work we show the existence of cyclic AMP phosphodiesterase (EC 3.1.4.17) in human erythrocyte membranes and have clarified some properties of the enzyme. In human erythrocytes, about 23% of the total cyclic AMP phosphodiesterase activity is in a membrane-bound form. Although it could be solubilized with Triton X-100 in 5 mM Tris-HCl buffer (pH 8.0), it was not solubilized by a low or high concentration of salt. The enzyme seems to be localized in the cytoplasmic surface, since it is detected in sealed inside-out vesicles of human erythrocyte membranes, but not in intact human erythrocytes. The optimum pH was found to lie between 7.4 and 8.0, and Mg2+ was found to be necessary for its activity. Ca2+ and calmodulin could not stimulate the activity of this enzyme. Theophylline was a strong inhibitor, but cyclic GMP could not inhibit the enzymic hydrolysis of cyclic [32P]AMP and this membrane-bound enzyme therefore seems to be specific to cyclic AMP.  相似文献   

4.
A Zn2+-GPC cholinephosphodiesterase activity, which is present more predominently in myelin than in microsome or cytosol, has been examined using -nitrophenylphosphocholine as a substrate. In the solubilization of enzyme activity from myelin membranes, lysolecithin was found to be more effective than Triton X-100 or deoxycholate. Especially, the myelin-bound phosphodiesterase was suggested to be a glycosylphosphatidyl-inositol-anchored protein, based on solubilization by B. cereus phospholipase C and Triton X-114 phase separation. Interestingly, it was found that while phospholipase C-solubilized enzyme, a hydrophilic protein, was associable with Concanavalin A column, detergent-solubilized amphiphilic form of enzyme was not. Either detergent extract or cytosol was observed to contain both amphiphilic form and hydrophilic one. In CM-sephadex chromatography, the soluble hydrophilic phosphodiesterase was observed to be separatable into two forms of enzyme. In comparative studies, both forms of phosphodiesterase showed much similarity in substrate specificity, optimum pH, Km value and Zn2+ requirement, although they differed in charge property and molecular weight.  相似文献   

5.
A Zn2+-glycerophosphocholine cholinephosphodiesterase was purified with a specific activity of 4.6 μmole/min·mg protein from bovine brain membranes by procedures involving PI-PLC solubilization, concanavalin A affinity chromatography, CM-sephadex chromatography and Sephadex G-150 chromatography. Based on molecular weight determination gel chromatography and SDS polyacrylamide gel electrophoresis, the phosphodiesterase activity appears to be a dimeric protein (110 kDa) composed of two subunits with a molecular weight of approximately 54 kDa. The Km value for p-nitrophenylphosphocholine and the optimum pH were found to be 16 μM and pH 10.5, respectively. The phosphodiesterase was inhibited by Cu2+, but not the other divalent metal ions. The activity of the apoenzyme was remarkably activated by Co2+ or Zn2+, but not Mn2+ or Mg2+. In addition, the inactivation of the enzyme in glycine buffer was prevented by Mn2+ or Zn2+, but not Co2+ or Mg2. In a separate experiment, comparing properties of the purified and membrane-bound phosphodiesterases, the forms of two enzymes were quite similar except in stability. Both enzymes were more stable at pH 7.4 than pH 5 or 10. However, the membrane-bound enzyme was more stable than the soluble enzyme at all three pHs. These data suggest that the activity of the phosphodiesterase may be stabilized in-vivo.  相似文献   

6.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a plasma enzyme with extensive sequence similarity to integrin alpha subunits, is inhibited by micromolar concentrations of lipid A, phosphatidic acid (PA) and lysophosphatidic acid (M. G. Low and K.-S. Huang, J. Biol. Chem. 268, 8480-8490, 1993). In this study we have explored the mechanism of inhibition using synthetic analogs of lipid A, and PA. Monosaccharide analogs of lipid A, which varied in the number and position of the phosphate groups, the type of acyl group, and its linkage to the glucosamine ring, were tested for their ability to inhibit GPI-PLD. A compound (SDZ 880.431) containing 3-aza-glucosamine 1,4-diphosphate as the polar headgroup was identified which had a potency (IC(50) approximately 1 microM) similar to natural lipid A preparations. Removal of either phosphate residue increased the IC(50) markedly. Analogs of PA such as (7-nitro-2-1,3-benzoxadiazo-4-yl)amino-PA, ceramide 1-phosphate, and hexadecyl phosphate had approximately IC(50) values ranging from 1 to 5 microM, indicating that considerable variation in the structure of the hydrophobic groups was permissible. Inhibition of GPI-PLD by long-chain PA could not be blocked by high concentrations of glycerol 1-phosphate or dibutyryl PA. These results indicate that the hydrophobic groups do not have a passive role in inhibition but are directly involved in the binding interaction with GPI-PLD. We propose that this diverse group of inhibitors all bind to a common site on GPI-PLD, the central hydrophobic cavity predicted by the beta-propeller model for integrin alpha subunits and GPI-PLD.  相似文献   

7.
Rat brain microsomes have the capacity to liberate radioactive free aldehydes from 1-[1-14C]alk-1'-enyl-sn-glycero-3-phosphoethanolamine (lysoplasmalogen). Glycerophosphoethanolamine was found using 1-alk-1'-enyl-sn-glycero-3-phospho-[3H]ethanolamine. The ratio of both products released by lysoplasmalogenase action was 1:1. Another enzymic activity could be demonstrated, which hydrolyzes lysoplasmalogen at the hydrophilic part of the molecule, a lysophospholipid phosphodiesterase. Thus, 1-[1-14C]alk-1'-enylglycerol was detected as well as [3H]ethanolamine, again in a molar ratio, from the respective labeled substrates. This enzyme possesses nearly the same affinity toward the substrate as lysoplasmalogenase. Whereas the lysophospholipid phosphodiesterase is totally inhibited in the presence of NaF or EDTA, lysoplasmalogenase activity is not affected by these reagents. 1-[1-14C]Alk-1'-enylglycerol acts also as substrate for lysoplasmalogenase, which liberates radioactive aldehydes at the same rate as from lysoplasmalogen. Because the apparent Km and Vmax values are nearly identical for both substrates, the enzyme activities are inhibited in the same way, and the pH optimum is about 7.2 in both cases, it is concluded that both substrates were attacked by the same enzyme. The enzyme does not differentiate between a substrate substituted at the sn-3 position of glycerol and one that is not. It requires only a free OH group at the sn-2 position. Phosphoethanolamine phosphatase activity was also determined under our experimental conditions.  相似文献   

8.
In the cells of the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris the two enzymes of the cAMP system enzymes - adenylate cyclase and cAMP phosphodiesterase (PDE) exist in a soluble and membrane-bound forms. After mild disruption of the cells (sonication up to 3 min) the activity of both enzymes is found in the chromatophores. In the cells of the two types of bacteria grown under anaerobic conditions soluble adenylate cyclase is predominant. In the cells of R. rubrum the soluble form of PDE posesses higher activity, whereas in the cells of Rh. palustris a higher activity is observed in the membrane-bound form. In addition to their different localization in the cells, the PDE forms of Rh. rubrum differ in their ratios to the concentrations of hydrogen ions and bivalent metals; the latter difference, however, may be accounted for by the effect of a protein modulator of PDE. The pH optimum of membrane-bound PDE is 9.15. Soluble PDE has two activity maxima at pH 7.5 and 8.7. It is probable that similar to the animal tissue enzyme, PDE from Rh. rubrum exists in the soluble phase in at least tw forms. Close pH optima for soluble adenylate cyclase and for one of the soluble PDE forms (about 8.5) may indicate the unidirectional control of these enzymes by hydrogen ion concentration.  相似文献   

9.
Adenylate cyclase and cyclic AMP (cAMP) phosphodiesterase have been identified and partially characterized in bacteroids of Bradyrhizobium japonicum 3I1b-143. Adenylate cyclase activity was found in the bacteroid membrane fraction, whereas cAMP phosphodiesterase activity was located in both the membrane and the cytosol. In contrast to other microorganisms, B. japonicum adenylate cyclase remained firmly bound to the membrane during treatment with detergents. Adenylate cyclase was activated four- to fivefold by 0.01% sodium dodecyl sulfate (SDS), whereas other detergents gave only slight activation. SDS had no effect on the membrane-bound cAMP phosphodiesterase but strongly inhibited the soluble enzyme, indicating that the two enzymes are different. All three enzymes were characterized by their kinetic constants, pH optima, and divalent metal ion requirements. With increasing nodule age, adenylate cyclase activity increased, the membrane-bound cAMP phosphodiesterase decreased, and the soluble cAMP phosphodiesterase remained largely unchanged. These results suggest that cAMP plays a role in symbiosis.  相似文献   

10.
Phosphatase activity in intact Trypanosoma cruzi epimastigotes has been demonstrated. After subcellular fractionation three activities were characterized: (a) a membrane-bound microsomal acid activity with an optimum pH of 4.0 and a Km of 1.2 mM, strongly inhibited by tartrate and fluoride; (b) a soluble cytosolic acid activity with an optimum pH of 5.5 and a Km of 0.95 mM, strongly inhibited by p-hydroxymercuribenzoate, EDTA and copper ions and activated by cyanide, manganese and magnesium ions; and (c) a soluble cytosolic alkaline activity with an optimum pH of 8.0 and a Km of 3.8 mM, inhibited by p-hydroxymercuribenzoate, fluoride, EDTA, and copper, calcium and zinc ions. This activity was increased by magnesium and manganese ions.  相似文献   

11.
Carcinoembryonic antigen (CEA), a widely used tumor marker, is attached by a glycosylphosphatidylinositol (GPI) anchor motif to the cell membrane. Recent study suggested that membrane-bound CEA might be cleaved by glycosylphosphatidylinositol-phospholipase D (GPI-PLD). We studied the effect of GPI-PLD on the cleavage of CEA to elucidate the implication for metastatic potential in colorectal carcinoma cells. CEA amount of conditioned medium was changed by suramin and phenanthroline (activator and inhibitor of GPI-PLD) only in SW620 and SW837 which expressed both CEA and GPI-PLD mRNA. Suramin treatment also augmented migratory activity and decreased cell surface CEA expression in SW620 and SW837. Furthermore, GPI-PLD knockdown cells using GPI-PLD-specific siRNA in SW620 and SW837 showed decreased CEA secretion from cell membrane and the migration activity, increased membrane-bound CEA amount. Splenic injection of SW620 and SW837 induced marked hepatic metastases in nude mice. These results suggest that membrane-bound CEA is cleaved by GPI-PLD and that this cleavage enhances the metastatic potential in colorectal carcinoma cells.  相似文献   

12.
Cripto-1 (CR-1) is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that has been shown to play an important role in embryogenesis and cellular transformation. CR-1 is reported to function as a membrane-bound co-receptor and as a soluble ligand. Although a number of studies implicate the role of CR-1 as a soluble ligand in tumor progression, it is unclear how transition from the membrane-bound to the soluble form is physiologically regulated and whether differences in biological activity exist between these forms. Here, we demonstrate that CR-1 protein is secreted from tumor cells into the conditioned medium after treatment with serum, epidermal growth factor, or lysophosphatidic acid, and this soluble form of CR-1 exhibits the ability to promote endothelial cell migration as a paracrine chemoattractant. On the other hand, membrane-bound CR-1 can stimulate endothelial cell sprouting through direct cell-cell interaction. Shedding of CR-1 occurs at the GPI-anchorage site by the activity of GPI-phospholipase D (GPI-PLD), because CR-1 shedding was suppressed by siRNA knockdown of GPI-PLD and enhanced by overexpression of GPI-PLD. These findings describe a novel molecular mechanism of CR-1 shedding, which may contribute to endothelial cell migration and possibly tumor angiogenesis.  相似文献   

13.
Incubation of homogenates of rat renal cortex at 4 degrees resulted in increased cAMP phosphodiesterase activity; the increase was much more rapid in hypotonic medium than in one of physiological tonicity. cAMP phosphodiesterase activity did not increase with incubation of supernatant fractions (48,000 x g, 20 min) prepared from isotonic homogenates. Extraction of the isotonic particulate fraction with hypotonic buffer released an activator which increased cAMP phosphodiesterase activity of the supernatant fraction. The kidney phosphodiesterase activator differed from a heat-stable, calcium-dependent protein activator of phosphodiesterase in that it was destroyed by heating (90 degrees for 10 min) and was not inhibited by EGTA. The phosphodiesterases of rat renal cortex were partially resolved by chromatography on DEAE-Bio-Gel, and a cAMP phosphodiesterase that is sensitive to the kidney activator was identified. This phosphodiesterase was separable from that affected by a calcium-dependent phosphodiesterase activator from bovine brain and from cGMP-stimulated cAMP phosphodiesterase. As determined by sucrose density gradient centrifugation, after incubation with the kidney activator, the activated form of phosphodiesterase had a lower sedimentation velocity than did the unactivated form.  相似文献   

14.
p-Nitrophenyl phosphorylcholine-hydrolyzing phosphodiesterase activity, which is present more predominantly in brain than liver, kidney or small intestine, was released from the homogenate of brain membrane by Bacillus cereus phospholipase-C. The release of the enzyme was time-dependently induced selectively by phospholipase-C, but not by phospholipases A2 or D, or protease. The released phosphodiesterase was partially purified by DEAE-sephacel and HPLC gel chromatographies with the specific activities of 400 and 1500 nmol/mg · h, respectively. The optimum pH and Km values of the partially purified phosphodiesterase, possessing a mol. wt of 100,000, were observed to be pH 11 and 10 μM, respectively, quite similar to the values of the membrane-bound enzyme, except thermostability and temperature dependency of activity. Interestingly, among phosphorylcholine-containing compounds only glycero-phosphorylcholine exhibited the competitive inhibition of the phosphodiesterase activity.  相似文献   

15.
Two enzymes endowed with trehalase activity are present in Candida albicans. The cytosolic trehalase (Ntc1p), displayed high activity in exponential phase regardless of the carbon source (glucose, trehalose or glycerol). Ntc1p activity was similar in neutral (pH 7.1) or acid (pH 4.5) conditions, strongly inhibited by ATP, weakly stimulated by divalent cations (Ca2+or Mn2+) and unaffected in the presence of cyclic AMP. The Ntc1p activity decreased in stationary phase, except in glycerol-grown cultures, but the catalytic properties did not change. In turn, the cell wall-linked trehalase (Atc1p) showed elevated activity in resting cells or in cultures growing on trehalose or glycerol. Although Atc1p is subjected to glucose repression, exhaustion of glucose in itself did not increased the activity. Significant Atc1p values could also be measured at neutral or acid pH, but Atc1p was insensitive to ATP, cyclic AMP and divalent cations. These results are in direct contrast with the current classification of yeast trehalases based on their optimum pH. They are also relevant in the light of the proposed use of trehalase inhibitors for the treatment of candidiasis.  相似文献   

16.
1. A phosphodiesterase that cleaves glycerophosphoinositol into glycerophosphate and inositol has been detected in rat tissues. 2. The enzyme requires Mg2+ (Mn2+) and has a pH optimum of 7.7. 3. The richest sources of the enzyme are kidney and intestinal mucosa. In pancreas subcellular fractions it occurs largely in the microsomal fraction. 4. The enzyme is inhibited by excess substrate and by the reaction product glycerophosphate. 5. Temperature-stability studies and other observations distinguish the enzyme from other membrane-bound phosphodiesterases active at an alkaline pH e.g. glycerophosphoinositol inositophosphohydrolase, glycerophosphocholine diesterase, inositol cyclic phosphate phosphodiesterase and phosphodiesterase I.  相似文献   

17.
Yoshida S 《Plant physiology》1979,64(2):247-251
Activity of membrane-bound phospholipase D in microsomes from bark tissues of black locust tree (Robina pseudoacacia L.) was demonstrated to be regulated by a competitive binding of divalent cations. Binding of Ca2+ at high concentrations (1 to 50 millimolar) modified the pH activity profile, shifting the optimum pH by 0.5 unit toward neutral and increasing the activity in the neutral pH. Mg2+, on the other hand, inhibited the reaction of membrane-bound phospholipase D without added Ca2+, and competitively inhibited the Ca2+ stimulation. The regulatory effects of those ions were dependent on pH. Reduction in pH resulted in a decrease in the apparent dissociation constant for Ca2+ and an increase in that for Mg2+. From Lineweaver-Burk double reciprocal plots of Ca2+ and the initial velocity, it was suggested that the binding of Ca2+ in the higher concentration resulted in nearly the same conformational change of enzyme as reduction in pH. Mg2+, on the other hand, counteracted those effects of Ca2+ and lower pH on the enzyme conformation in such a manner as to inactivate. The membrane-bound phospholipase D because more sensitive to Ca2+ and less sensitive to Mg2+ as the hardiness of the tissues decreased. This fact may indicate that some qualitative changes in membranes are involved in the hardiness changes and also in the susceptibility of phospholipid to degradation by phospholipase D in plant cells.  相似文献   

18.
《The Journal of cell biology》1994,126(5):1267-1276
Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total amphiphilic LPL and Gce1 to their hydrophilic versions. Inositol- phosphate was retained in the residual protein-linked anchor structure. This suggests cleavage of the GPI anchors by an endogenous GPI-specific insulin- and glimepiride-inducible phospholipase (GPI-PL). Despite cleavage, hydrophilic LPL and Gce1 remained membrane associated and were released only if a competitor, e.g., inositol- (cyclic)monophosphate, had been added. Other constituents of the GPI anchor (glucosamine and mannose) were less efficient. This suggests peripheral interaction of lipolytically cleaved LPL and Gce1 with the adipocyte cell surface involving the terminal inositol- (cyclic)monophosphate epitope and presumably a receptor of the adipocyte plasma membrane. In rat adipocytes which were resistant toward glucose transport stimulation by insulin, the sensitivity and responsiveness of GPI-PL to stimulation by insulin was drastically reduced. In contrast, activation of both GPI-PL and glucose transport by the sulfonylurea, glimepiride, was not affected significantly. Inhibition of glucose transport or incubation of rat adipocytes in glucose-free medium completely abolished stimulation of GPI-PL by either insulin or glimepiride. The activation was partially restored by the addition of glucose or nonmetabolizable 2-deoxyglucose. These data suggest that increased glucose transport stimulates a GPI-PL in rat adipocytes.  相似文献   

19.
Cyclic nucleotide phosphodiesterase activity in brush border membranes, isolated from proximal tubule cells of the rabbit renal cortex, was investigated. Brush border cAMP phosphodiesterase activity was tightly bound to the membrane and was distinguished from the soluble phosphodiesterase activity of the renal cortex cytosol. Multiple forms of the brush border membrane cAMP phosphodiesterase activity, dependent on the concentration of substrate, were found. When assayed with 1 μm or 1 mm cAMP, activities differed in pH optimum, effects of various divalent cations, inhibition by metal ion chelators and reactivation by metals, thermolability, sensitivity to inhibitors and specificity.Renal brush border membranes also possessed cGMP phosphodiesterase activity. cAMP was a relatively poor inhibitor of the hydrolysis of 1 μm cGMP and the hydrolysis of 1 μm cAMP was virtually insensitive to cGMP. These findings suggest that the low substrate concentration-dependent cAMP phosphodiesterase was distinct from the low substrate concentration-dependent cGMP phosphodiesterase.Heat-stable effectors of phosphodiesterase activity were found in the renal cortex. One effector activated soluble cAMP phosphodiesterase. Activation was decreased by EGTA, enhanced by Ca2+ and diminished by preincubating the effector with proteolytic enzymes. The other heat-stable effector inhibited brush border membrane phosphodiesterase activity. Inhibition was unaffected by metal ions, unaffected by preincubating the effector with proteolytic enzymes, but diminished by preincubation with phospholipase C and neuraminidase.It is suggested that changes in the activity of the enzyme (or enzymes), which in turn controls, in part, the effective concentration of cAMP at its site (or sites) of action in the renal cell, may be significant in regulating hormonal-dependent transport in the proximal tubule.  相似文献   

20.
Cholinesterase activity was studied in 2 to 10-week-old pea plants cultivated under artificial illumination. Free and membrane-bound forms of the enzyme were separated by extracting the enzyme from pea shoots with buffers differing in ionic strength. The ratio of the free cholinesterase to the membrane-bound one fluctuated between 1 : 1 and 1 : 2.5. The free cholinesterase was inhibited by neostigmine (0.1mmoll-1) by 50%, the membrane-bound enzyme by 90%. The pH optimum of cholinesterase activity was 8.5, the temperature optimum 37 °C. The enzyme activity was increased by some cations in this order: Mg2+ < < K+. The Km value for the substrate S-acetylthiocholine iodide was 250 μmoll-1, the enzyme activity being inhibited by concentrations higher than 3 mmoll-1 of this substrate. The activity of the membrane-bound enzyme was demonstrated in the roots, leaves, stems, fruits, seeds and carpels, but could not be reliably detected in the blossoms. The highest activity expressed per fresh matter was found in older leaves and in the fruits, the lowest in the roots and stems. Cholinesterase activity in plant parts markedly varied during the investigated growth period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号