首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
绿豆产量相关农艺性状的QTL定位   总被引:1,自引:0,他引:1  
绿豆育种的目标性状大多是受多基因控制的数量性状,表现型受环境影响很大。为深入分析绿豆复杂数量性状的遗传特征,本试验以绿豆Berken/ACC41 F10重组近交系群体为作图群体,利用该群体已经构建的包含79个RFLP标记的分子连锁图谱对北京和广西2个种植环境下考察的11个绿豆产量相关农艺性状进行QTL定位。结果表明,2个环境下共检测到产量相关性状QTL 63个(其中北京25个,广西38个),分布于除第13连锁群以外的12条连锁群。大部分QTL只在单一环境下被检测到,说明产量相关QTLs与环境之间存在明显的互作。2个环境均能检测到的QTL仅有6个,分别为控制荚长、百粒重、生育期的QTLs,这6个在不同生态环境下同时发挥效应的QTLs对于绿豆分子标记辅助育种具有特殊的意义。研究还发现2个QTLs富集区域和若干成束分布的QTLs,它们可能是发掘通用QTL的候选位点。  相似文献   

2.
利用绿豆(Vigna radiata)品种苏绿16-10和潍绿11杂交构建的F2和F3群体发掘调控绿豆产量相关性状的遗传位点。同时对绿豆产量相关性状进行表型鉴定和相关性分析,并利用构建的遗传连锁图谱进行QTL定位。结果表明,单株产量与单株荚数、单荚粒数、百粒重和分枝数均呈正相关。单株产量与单株荚数的相关性最高,这2个性状在F2和F3群体中的相关系数分别为0.950和0.914。在F2群体中,共检测到8个与产量性状相关的QTL位点,其中与单株荚数、单荚粒数和单株产量相关的QTL位点各1个,分别解释11.09%(qNPP3)、17.93%(qNSP3)和14.18%(qYP3)的表型变异;2个与分枝数相关的QTL位点qBMS3和qBMS11,分别解释18.51%和7.06%的表型变异;3个与百粒重相关的QTL位点qHSW3、qHSW7和qHSW10,分别解释5.33%、46.07%和4.24%的表型变异。在F3群体中,qNSP3和qHSW7再次被检测到,表明这2个QTLs有较好的遗传稳定性。同时,开发了1个与百粒重主效QTLqHSW7紧密连锁的InDel标记R7-13.4,并利用自然群体对...  相似文献   

3.
油分含量和百粒重是大豆中两个重要的性状。本研究利用东农46和L-100衍生的重组自交系(RIL)群体,经过两年3个地点种植,通过分子标记技术定位与大豆油分含量和百粒重相关的QTL(quantitative trait locus)。结果表明,检测到6个与油分含量相关的QTL,分别位于E、H、G和I连锁群上,可解释的表型贡献率范围为2.12%~2.77%;检测到5个与百粒重相关的QTL,分别位于K、H、B2和G连锁群上,可解释的表型贡献率范围为2.30%~7.59%,在H连锁群上有2个QTL两年均被检测到,标记区间分别为Satt279-Sat_122和Satt192-Satt568。在H连锁群上Satt192-Satt568标记区间内同时检测到与油分含量和百粒重相关的QTL。研究结果为大豆油分含量和百粒重等性状的分子辅助育种提供了理论依据。  相似文献   

4.
水稻叶片性状和根系活力的QTL定位   总被引:12,自引:2,他引:10  
应用由247个株系组成的珍汕97B/密阳46重组自交系(RIL)群体及其分子标记连锁图谱,检测控制剑叶、倒二叶、倒三叶的5个形态性状和控制根系伤流量性状的数量性状座位(QTL)。在9个标记区间检测到控制叶片形态性状的24个QTL,LOD值为2.9~11.8,单个QTL的表型变异贡献率为4.0%~32.5%;分别检测到56对和4对控制叶片形态和根系活力的上位性互作,绝大多数互作发生在2个不表现加性效应的座位之间。与该群体产量性状QTL的研究结果相比较,发现控制叶片性状和根系活力的QTL与产量性状QTL往往处于相似的染色体区间。  相似文献   

5.
绿豆是我国传统的杂粮作物,遗传研究基础薄弱,优异基因发掘和资源利用效率低下。本研究在前期SNP高密度遗传连锁图谱的基础上,基于重组自交系群体的株高、主茎分枝、荚长、荚宽、单荚粒数、种皮色、种皮光泽、籽粒分布密度、初花期、叶绿素含量、百粒重等11个表型性状的数据调查分析及QTL定位研究。结果表明,绿豆种皮色为简单单基因控制,种皮光泽的遗传则较为复杂,数量性状中除百粒重外均不符合正态分布。11个性状共检测到20个QTL,分布在8个连锁群的14个非重叠区间。其中LG5、LG3、LG10分别检测到多个性状相关QTL,且定位区间重合。荚宽检测到的QTL最多,分别位于LG1、LG5、LG7和LG11,表型贡献率为5.5%~12.3%不等。单荚粒数、种皮光泽、种皮色及主茎分枝则各检测到单个QTL,其中种皮光泽(LG5)和种皮色(LG4)QTL位点的表型贡献率分别是61.0%和69.7%。结合KEGG和SNP变异分析,发现18个与农艺性状有关的候选基因。本研究结果将有助于提升绿豆分子遗传学研究水平,为新基因发掘及分子标记辅助育种奠定基础。  相似文献   

6.
Ou CG  Deng BT  Bao SY  Zhao ZW  Hu H  Zhuang FY  Mao SM 《遗传》2010,32(12):1290-1295
以高胡萝卜素自交系P50006和HCM A.C.为亲本构建的F2群体为作图群体,对胡萝卜中α-胡萝卜素、α-胡萝卜素、总胡萝卜素和番茄红素含量进行QTL定位及遗传分析。结果表明,α、β-胡萝卜素、总胡萝卜素和番茄红素含量的广义遗传力分别为0.75、0.50、0.31和0.93。遗传图谱包含91个SRAP(Sequence-related amplified polymorphism)标记,分布于9个连锁群,总长度502.9cM,标记间平均距离5.5cM。除α-胡萝卜素含量外,α-胡萝卜素、总胡萝卜素和番茄红素含量分别检测到1个主效QTL,均为加性遗传效应,分别解释表型变异为12.79%、12.87%和14.61%。此外,α-胡萝卜素和番茄红素含量还分别检测到1对上位性QTL,最大遗传效应分别为显性×加性互作和显性×显性互作,分别解释表型变异为15.1%和6.5%。文章中与QTL连锁的分子标记可用于高胡萝卜素、番茄红素的种质筛选和聚合育种。  相似文献   

7.
干旱胁迫和正常灌溉条件下玉米产量性状的QTL分析   总被引:1,自引:1,他引:1  
产量及其产量因子是衡量玉米耐旱能力的重要性状。本研究利用Lo1067×Y i72的F2∶3家系进行产量性状的数量性状位点(QTL)的分析。结果表明,在正常水分条件和开花期干旱胁迫条件下,分别有14个QTL与产量性状穗重、粒重、轴重、百粒重、穗数、穗粒数有关。此外,还检测到7个与抗旱指数(TI)相关的QTL。各QTL所解释的表型变异在1%~78%;这些QTL以部分显性和超显性为主。不同胁迫条件下检测到的QTL不一致,说明存在显著的QTL与环境互作。  相似文献   

8.
以2004年构建并保存在种质库10年的186个单株组成的湘743/Katy F2:3群体为材料,在发芽的第5天和第9天统计亲本和各株系的发芽率和成苗率,应用由129个标记组成的连锁图谱检测与种子活力相关的QTL,一共检测到12个QTLs,共分布在6条染色体的6个区间,单个QTLs对群体性状表型变异的贡献率为5.73%~47.53%,联合贡献率都是50%。其中,在第8染色体RM152~RM310区间检测到一个主效的QTL,对第5天发芽率和第9天发芽率和第9天成苗率的贡献率分别为12.02%、47.53%、38.64%,来自于湘743的基因增加发芽率和成苗率;在第9染色体RM444~RM219区间检测到一个稳定表达的QTL,对第5天发芽率和第9天发芽率和第9天成苗率的贡献率分别为8.85%、7.49%、10.36%,来自于Katy的基因增加发芽率和成苗率;此外,没有检测到显著的上位性互作。  相似文献   

9.
试验拟对谷子重要农艺性状进行数量性状位点QTL分析。以表型差异较大的沈3/晋谷20F2作图群体为材料,观测其株高、穗长等性状,选用SSR做分子标记,利用完备区间作图法(BASTEN C J)进行QTL分析。结果显示,表型数据在作图群体中呈现连续分布,表现为多基因控制的数量性状,被整合的54个SSR标记构建10个连锁群,LOD阈值设置为2.0,检测到与株高相关的主效QTL2个,联合贡献率45.9637%,穗长主效QTL1个,贡献率14.9647%,与穗重、粒重相关的主效QTL为同一位点,贡献率分别为11.9601%和10.1879%。有6组QTL位点之间存在基因互作效应,大小范围为-0.4986-16.6407,对性状的贡献率在2.2716%至6.7478%之间。谷子表型控制复杂,相关QTL的检测受环境影响较大,不同连锁群QTL间互作明显。  相似文献   

10.
以中国的高油分自交系“高油”和欧洲高含油量品种“Sollux”的F1产生的282个株系组成的双二倍体(DH)群体为材料,在125个SSR标记座位构建的连锁图谱基础上,根据在中国和欧洲四个不同环境下的表型鉴定结果,采用混合线性模型基础上的QTL分析软件,对油菜3个重要农艺性状:株高,开花期和成熟期进行了数量性状基因座位(QTL)的联合定位分析,估测了这些QTL的加性、上位性以及与环境的互作效应。结果表明各性状均受多个加性、加加上位以及与环境互作的QTL控制。株高受多个QTL影响(12个位点具有加性或兼有环境互作效应,5个位点具有互作效应),以加性效应为主,加性效应总和可解释定位群体表型变异的75%左右,并多兼有上位性效应。12个主效QTL中,9个是“高油”等位基因相对“Sollux”有降低株高的作用,大多数加性×环境互作QTL的有效等位基因具有环境选择特异性。7个ae基因座位中,5个“高油”等位基因在杭州种植环境下,除一例外所有在德国环境下的互作基因座中,“Sollux”等位基因起着增加株高的作用,加加上位性主效总和为加性主效总和的三分之一。7个控制花期和8个控制成熟期的主效QTL中,分别有6个和5个是来自“高油”的等位基因相对“Sollux”具有提前开花和成熟的效应,这些QTL的效应总和占到性状表型变异的60%左右。5个位于第2和第12连锁群中的2个大效应QTL可能和已多次报导的VFN1和VFN3基因相近或相同。开花期和成熟期两性状均检测到显著的ae互作效应,双亲等位基因的效应在各环境下呈离散分布。位于14和19连锁群上的两个主效株高QTL同时也是控制开花期和油分含量的基因位点,因而利用这两个位点进行标记辅助筛选时要考虑到对油分含量的影响。控制成熟期的8个主效QTL中有3个同时也是控制开花期的基因座位,证实了开花期和成熟期高度正相关的遗传基础,两个生育性状均表现有较弱的QTL间加加上位互作,但以主效QTL的作用为主。  相似文献   

11.
利用RIL和CSSL群体检测水稻种子休眠性QTL   总被引:23,自引:0,他引:23  
利用由梗稻品种Asominori与籼稻品种IR24的杂交组合衍生的重组自交F10。家系(Recombinant Inbred Lines,RIL)群体及其衍生的染色体片段置换系(Chromosome Segment Substitution Lines,CSSL)群体,进行了种子休眠性QTL的检测和遗传效应分析。其中CSSL群体有2个,即CSSLl(以Asominori为背景,置换片段来自IR24)和CSSL2(以IR24为背景,置换片段来自Asominori)。在RIL群体上共检测到3个种子休眠性QTL,分别位于第3、6和9染色体上;在CSSL1群体中检测到分布在第1、3和7染色体上的3个休眠性QTL;而在CSSl2群体上检测到的3个QTL则分别位于第1、2和7染色体上。同时在两套CSSL群体上,分别检测到位于第1、7染色体上位置相近且效应一致的休眠性QTL,分析表明其所在的Asominori片段含对种子休眠性的增效基因,相应的IB24段含有减效基因。  相似文献   

12.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

13.
Seed dormancy in barley (Hordeum vulgare L.) is one of the most important parameters affecting malting. Seed dormancy is quantitatively inherited and variously influenced by the environment. The objectives of the present study were to determine the genome location and effects of quantitative trait loci (QTLs) involved in the expression of seed dormancy in a barley cross between two varieties derived from different germplasm pools. Using a doubled-haploid population of 107 lines of the cross between the malting types Triumph (two-row, dormant) and Morex (six-row, non-dormant), seed dormancy phenotypic data sets from five environments and a 147-marker linkage map were developed in order to perform QTL analyses with simple interval mapping and simplified composite interval mapping procedures. Two different types of variables were considered for seed dormancy characterization: (1) level of dormancy induced during seed development, which was indirectly measured as germination percentage at 3 days and 7 days, GP3 and GP7 respectively; (2) rate of dormancy release in the course of a period after seed harvest (after-ripening). Different mechanisms of genetic control were detected for these two types of dormancy-related traits. A major and consistent dormancy QTL near the centromere on chromosome 7(5H) was associated with the establishment of dormancy during seed development and accounted for 52% and 33% of the variability for GP3 and GP7, respectively. Two other QTLs located in the vicinity of the vrs1 locus on chromosome 2(2H) and near the long arm telomere on chromosome 7(5H) explained 9% and 19% of variation, respectively, for the rate of dormancy release during after-ripening. Likewise, seed dormancy was assessed in an F2 population derived from the cross between two dormant types of distinct germplasm groups, Triumph (European, two-row, malt) and Steptoe (North American, six-row, feed), which showed similar but not identical genetic control for dormancy. Interestingly, there is remarkable dormancy QTL conservation in both regions on chromosome 7(5H) identified in this study and among other barley mapping populations. These widely conserved QTLs show potential as targets for selection of a moderate level of seed dormancy in breeding programs.Communicated by P. Langridge  相似文献   

14.
Summary Models of the evolution of seed dormancy reveal that dormancy is favoured either when opportunities for establishment vary over time and when there is wide variation in the probability of success, or when the probability of success is limited by frequency dependence. Empirical evidence supporting the temporal heterogeneity hypothesis exists, but there is scant evidence for dormancy being favoured by frequency dependent competition among seedlings. We test the hypothesis that the intensity of between-sib competition should favour a positive relationship between maternal fecundity and seed dormancy. This hypothesis is supported for the rare, vernal pool annual,Pogogyne abramsii: the proportion of dormant offspring was significantly higher among high fecundity mothers than among other mothers. Dormancy inP. abramsii is controlled by the seed coat, a maternal tissue, so delaying germination favours the inclusive fitness of mothers by reducing the potential for competition among siblings. Seed weight and time to first germination varied significantly amongP. abramsii plants and mean seed weight increased linearly with plant biomass. Seed weight and seed number are independently regulated by plant size. Overall, seed weight varied 10-fold and variability in seed weight within mothers was not explained by plant biomass, seed yield or mean seed weight. GerminableP. abramsii seeds were significantly heavier than dormant seeds, and germinable seeds heavier than 0.20 mg germinated more rapidly than those smaller than 0.20 mg.  相似文献   

15.
In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed reserve utilization during the early (day 6), middle (day 10) and late (day 14) germination stages. The seedling dry weight (SDW) and weight of the mobilized seed reserve (WMSR) were increased, while the seed reserve utilization efficiency (SRUE) decreased, during the process of seed germination. The SDW and WMSR were affected by the seed weight, while the SRUE was not affected by the seed weight. A total of twenty unconditional and twenty-one conditional additive QTLs and eight epistatic QTLs were identified at three germination stages, and the more QTLs were expressed at the late germination stage. Among them, twelve additive and three epistatic QTLs for SDW, eight additive and three epistatic QTLs for WMSR and thirteen additive and two epistatic QTLs for SRUE were identified, respectively. The phenotypic variation explained by each additive QTL, epistatic QTL and QTL × development interaction ranged from 6.10 to 23.91%, 1.79 to 6.88% and 0.22 to 2.86%, respectively. Two major additive QTLs qWMSR7.1 and qSRUE4.3 were identified, and each QTL could explain more than 20% of the total phenotypic variance. By comparing the chromosomal positions of these additive QTLs with those previously identified, eleven QTLs might represent novel genes. The best four cross combinations of each trait for the development of RIL populations were selected. The selected RILs and the identified QTLs might be applicable to improve rice seed reserve utilization by the marker-assisted selection approach.  相似文献   

16.
Seed vigor is an important characteristic of seed quality. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed vigor, including the germination potential, germination rate, germination index and time for 50% of germination, at 4 (early), 5 (middle) and 6 weeks (late) after heading in two years. A total of 24 additive and 9 epistatic quantitative trait loci (QTL) for seed vigor were identified using QTL Cartographer and QTLNetwork program respectively in 2012; while 32 simple sequence repeat (SSR) markers associated with seed vigor were detected using bulked segregant analysis (BSA) in 2013. The additive, epistatic and QTL × development interaction effects regulated the dry maturity developmental process to improve seed vigor in rice. The phenotypic variation explained by each additive, epistatic QTL and QTL × development interaction ranged from 5.86 to 40.67%, 4.64 to 11.28% and 0.01 to 1.17%, respectively. The QTLs were rarely co-localized among the different maturity stages; more QTLs were expressed at the early maturity stage followed by the late and middle stages. Twenty additive QTLs were stably expressed in two years which might play important roles in establishment of seed vigor in different environments. By comparing chromosomal positions of these stably expressed additive QTLs with those previously identified, the regions of QTL for seed vigor are likely to coincide with QTL for grain size, low temperature germinability and seed dormancy; while 5 additive QTL might represent novel genes. Using four selected RILs, three cross combinations of seed vigor for the development of RIL populations were predicted; 19 elite alleles could be pyramided by each combination.  相似文献   

17.
为有效利用抗褐飞虱水稻Swarnalata,对2013年南京种植的Swarnalata/02428 F2分离群体进行抽穗期和种子休眠性考察,利用172个分子标记构建了Swarnalata/02428 F2的分子遗传连锁图谱,图谱全长为3311.4c M,标记间平均图距为19.22c M。利用Windows QTL Cartographer V2.5软件对该分离群体进行抽穗期和种子休眠性相关QTL检测,共检测到7个抽穗期相关QTL,分别位于第2、3、6、11染色体,其中位于第11染色体的q HD-11-1贡献率最高,为28.85%;检测到3个种子休眠性相关QTL,分别位于第3、6、9染色体,其中位于第9染色体的q Sd-9贡献率最高,为22.11%。分析表明,本研究检测到的抽穗期QTL与种子休眠QTL所在位置不同,说明该群体中种子休眠与抽穗期没有直接关系,它们分别由不同基因控制。本研究不仅为水稻休眠基因的精细定位及克隆奠定基础,也为更有效利用Swarnalata中的抗褐飞虱基因提供基础和一些优良的中间材料。  相似文献   

18.
Chromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S. weedy rice accession ‘PSRR-1’ with genome-wide coverage in an adapted rice cultivar ‘Bengal’ background. The majority of the CSSLs carried a single defined weedy rice segment with an average introgression segment of 2.8 % of the donor genome. QTL mapping results for several agronomic and domestication traits from the CSSL population were compared with those obtained from two recombinant inbred line (RIL) populations involving the same weedy rice accession. There was congruence of major effect QTLs between both types of populations, but new and additional QTLs were detected in the CSSL population. Although, three major effect QTLs for plant height were detected on chromosomes 1, 4, and 8 in the CSSL population, the latter two escaped detection in both RIL populations. Since this was observed for many traits, epistasis may play a major role for the phenotypic variation observed in weedy rice. High levels of shattering and seed dormancy in weedy rice might result from an accumulation of many small effect QTLs. Several CSSLs with desirable agronomic traits (e.g. longer panicles, longer grains, and higher seed weight) identified in this study could be useful for rice breeding. Since weedy rice is a reservoir of genes for many weedy and agronomic attributes, the CSSL library will serve as a valuable resource to discover latent genetic diversity for improving crop productivity and understanding the plant domestication process through cloning and characterization of the underlying genes.  相似文献   

19.
Three quantitative trait loci (QTLs) controlling seed dormancy were detected on group 4 chromosomes of wheat (Triticum aestivum L.) using 119 doubled haploid lines (DHLs) derived from a cross between AC Domain and Haruyutaka. A major QTL, designated QPhs.ocs-4A.1, was identified within the marker interval between Xcdo795 and Xpsr115 in the proximal region of the long arm of chromosome 4A. Two minor QTLs, QPhs.ocs-4B.2 on 4B and QPhs.ocs-4D.2 on 4D, were flanked by common markers, Xbcd1431.1 and Xbcd1431.2 in the terminal region of the long arms, suggesting a homoeologous relationship. These three QTLs explained more than 80% of the total phenotypic variance in seed dormancy of DHLs grown in the field and under glasshouse conditions. The AC Domain alleles at the three QTLs contributed to increasing seed dormancy. Comparative maps across wheat, barley and rice demonstrated the possibility of a homoeologous relationship between QPhs.ocs-4A.1 and the barley gene SD4, while no significant effects of the chromosome regions of wheat and barley orthologous to rice chromosome 3 region carrying a major seed dormancy QTL were detected. Received: 5 June 2000 / Accepted: 31 August 2000  相似文献   

20.
Seed banking following internationally agreed standards is an important way for preserving collections of wild plant species ex situ; but this method is not suitable for desiccation sensitive species. Lauraceae comprehends some of the dominant species in the evergreen broadleaved forest in the south of China and contains many species both of ecological and economical importance. However, study on seed biology such as germination and desiccation tolerance of this family is scarce. Seeds of 9 species from 5 genera of this family were collected and their dormancy status and germination requirement were studied; also their desiccation tolerance were determined using a modified 100 seed test. The results showed that seeds of Cinnamomum camphora probably have intermediate physiological dormancy; seeds of Actinodaphne forrestii, Actinodaphne obovata, Cinnamomum migao, Lindera metcalfiana var. dictyophylla, Lindera communis and Neolitsea polycarpa are non deep physiological dormant; Seeds of Cinnamomum burmannii and Phoebe glaucophylla may have no or negligible dormancy. All 9 species lost seed viability after desiccated to 286%-716% moisture content while still retained considerable viability with moisture content ranged from 1732% to 4487% after moist storage; thus seeds of the 9 species are all desiccation sensitive and can not be stored at the conventional seed bank conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号