首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.  相似文献   

2.
The chemokine receptor CXCR4 is involved in the growth and metastasis of tumor cells. However, the expression of its ligand, the chemokine CXCL12, in tumors and its role in regulating the accumulation of immune cells within the tumors is not clear. Using ELISA and immunohistochemistry we found that CXCL12 is expressed in the majority of nonsmall cell lung cancer tissue sections obtained from stage IA to IIB nonsmall cell lung cancer patients undergoing operation. Histopathologic examination of these sections indicated that high CXCL12 expression correlated with increased tumor inflammation. In addition, disease recurrence rates in a subgroup of adenocarcinoma patients showed a tendency to correlate with high CXCL12 expression in the tumor. Isolation of adenocarcinoma-infiltrating immune cells demonstrated an increase in the percentage of CD4+CD69+CXCR4+ T cells as compared with normal lung tissue. About 30% of these cells expressed the regulatory T cell markers CD25high and FoxP3. The percentage of CD8 T cells within the tumor did not change, however; the percentage of NK and NK T cells was significantly reduced. In correlation with CXCR4 expression, CD4 T cells showed increased migration in response to CXCL12 compared with CD8 T cells and NK cells. Overall, these observations suggest that CXCL12 expression may influence tumor progression by shaping the immune cell population infiltrating lung adenocarcinoma tumors.  相似文献   

3.
Efficient migration of CD4+ T cells into sites of infection/inflammation is a prerequisite to protective immunity. Inappropriate recruitment, on the other hand, contributes to inflammatory pathologies. The chemokine/chemokine receptor system is thought to orchestrate T cell homing. In this study, we show that most circulating human CD4+ T cells store the inflammatory chemokine receptors CXCR3 and CXCR1 within a distinct intracellular compartment. Equipped with such storage granules, CD4+ T cells coexpressing both receptors increased from only 1% ex vivo to approximately 30% within minutes of activation with PHA or exposure to the cyclooxygenase (COX) substrate arachidonic acid. Up-regulation was TCR independent and reduced by COX inhibitors at concentrations readily reached in vivo. The inducible inflammatory CXCR3(high)CXCR1+ phenotype identified nonpolarized cells, was preferentially triggered on CCR7+CD4+ T cells, and conferred increased chemotactic responsiveness. Thus, inducible CXCR3/1 expression occurs in a large fraction of CD4+ T cells. Its dependency on COX may explain a number of established, and point toward novel, effects of COX inhibitors.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

5.
Liver macrophages internalize circulating bloodborne parasites. It remains poorly understood how this process affects the fate of the macrophages and T cell responses in the liver. Here, we report that infection by Trypanosoma brucei induced depletion of macrophages in the liver, leading to the repopulation of CXCL16-secreting intrahepatic macrophages, associated with substantial accumulation of CXCR6+CD4+ T cells in the liver. Interestingly, disruption of CXCR6 signaling did not affect control of the parasitemia, but significantly enhanced the survival of infected mice, associated with reduced inflammation and liver injury. Infected CXCR6 deficient mice displayed a reduced accumulation of CD4+ T cells in the liver; adoptive transfer experiments suggested that the reduction of CD4+ T cells in the liver was attributed to a cell intrinsic property of CXCR6 deficient CD4+ T cells. Importantly, infected CXCR6 deficient mice receiving wild-type CD4+ T cells survived significantly shorter than those receiving CXCR6 deficient CD4+ T cells, demonstrating that CXCR6+CD4+ T cells promote the mortality. We conclude that infection of T. brucei leads to depletion and repopulation of liver macrophages, associated with a substantial influx of CXCR6+CD4+ T cells that mediates mortality.  相似文献   

6.
Heme oxygenase-1 (HO-1) has anti-inflammatory effects in asthma. CD4+CD25(high) regulatory T cells (Treg) are a potent immunoregulator that suppresses the immune response. We studied the effects of HO-1-mediated CD4+CD25(high) Treg on suppression of allergic airway inflammation by comparing mice treated with hemin, OVA, Sn-protoporphyrin (SnPP), and hemin plus SnPP. Airway responsiveness, airway eosinophil infiltration, the level of OVA-specific IgE, and the numbers of cells in general and eosinophils in particular in bronchial alveolar lavage fluid were lower in the hemin group than in the OVA, SnPP, and hemin plus SnPP groups. The expressions of HO-1 mRNA and protein in the lung were increased by repeated administrations of hemin and SnPP. However, the activity of HO-1 was highest in hemin mice. The percentage and suppressive function of CD4+CD25(high) Treg and the expression of Foxp3 mRNA were obviously enhanced after treatment with hemin. This increase was diminished by the administration of SnPP. The concentration of serum IL-10 was higher in the hemin group than in the other groups, whereas the level of serum TGF-beta did not significantly differ across groups. Furthermore, the ratio of IFN-gamma/IL-4 mRNA in the lung was higher in hemin-treated mice than in OVA and SnPP mice. The suppressive capacity of CD4+CD25(high) Treg was not enhanced in the IL-10-deficient mice treated with hemin. In conclusion, our experiments in the animal model demonstrated that HO-1 has anti-inflammatory effects, probably via enhancement of the secretion of IL-10 and promotion of the percentage of CD4+CD25(high) Treg.  相似文献   

7.
8.
CD4+CD25+调节性T细胞是一个具有独特免疫调节功能的T细胞亚群,人体主要通过CD4+CD25+调节性T细胞以免疫负向调节的方式来抑制自身反应性T细胞的作用,减少免疫性疾病的发生,从而维持机体内环境的稳定,维持免疫耐受。CD4+CD25+Treg已被证实其与肿瘤、感染、自身免疫病、移植免疫等多种疾病的发生、发展及转归均相关。随着社会的进步和人民生活水平的提高冠状动脉粥样硬化性病变作为一种慢性病变,其发病率越来越高,已经成为严重危害人类健康的常见病,近年来越来越多的证据表明炎症及免疫反应机制在冠状动脉粥样硬化性心脏病的发生、发展及预后过程中具有重要的作用。而CD4+CD25+调节性T细胞在冠状动脉粥样硬化性病变中所起的作用也受到越来越多的关注。本文就CD4+CD25+调节性T细胞与冠状动脉粥样硬化病变之间的关联做一综述。  相似文献   

9.
For many years the heterogeneity of CD4+ T-helper (Th) cells has been limited to Th1 and Th2 cells, which have been considered not only to be responsible for different types of protective responses, but also for the pathogenesis of many disorders. Th1 cells are indeed protective against intracellular microbes and they are thought to play a pathogenic role in organ-specific autoimmune and other chronic inflammatory disorders. Th2 cells provide protection against helminths, but are also responsible for the pathogenesis of allergic diseases. The identification and cloning of new cytokines has allowed one to enlarge the series of functional subsets of CD4+ Th effector cells. In particular, CD4+ Th cells producing IL-17 and IL-22, named Th17, have been initially implicated in the pathogenesis of many chronic inflammatory disorders instead of Th1 cells. However, the more recent studies in both humans and mice suggest that Th17 cells exhibit a high plasticity toward Th1 cells and that both Th17 and Th1 cells may be pathogenic. More recently, another two subsets of effector CD4+ Th cells, named Th9 and Th22 cells, have been described, even if their pathophysiological meaning is still unclear. Despite the heterogeneity of CD4+ effector Th cells being higher than previously thought and some of their subsets exhibiting high plasticity, the Th1/Th2 paradigm still maintains a strong validity.  相似文献   

10.
IL-8 is a potent inflammatory cytokine that induces chemotaxis of neutrophils expressing CXCR1 and CXCR2, thus indicating its involvement in the migration of these cells to inflammatory sites where bacteria proliferate. Presently, we showed that CXCR1(+) cells were predominantly found among CD8(+) T cells having effector phenotype, and that the expression of CXCR1 was positively correlated with that of perforin, suggesting that CXCR1 is expressed on effector CD8(+) T cells. Indeed, human CMV-specific CD8(+) T cells from healthy individuals, which mostly express the effector phenotype and have cytolytic function, expressed CXCR1, whereas EBV-specific CD8(+) T cells, which mostly express the memory phenotype and have no cytolytic function, did not express this receptor. The results of a chemotaxis assay showed that the migration of CXCR1(+)CD8(+) T cells was induced by IL-8. These results suggest that the IL-8-CXCR1 pathway plays an important role in the homing of effector CD8(+) T cells.  相似文献   

11.
12.
13.
Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses.  相似文献   

14.
Persistent viral infections and inflammatory syndromes induce the accumulation of T cells with characteristics of terminal differentiation or senescence. However, the mechanism that regulates the end-stage differentiation of these cells is unclear. Human CD4(+) effector memory (EM) T cells (CD27(-)CD45RA(-)) and also EM T cells that re-express CD45RA (CD27(-)CD45RA(+); EMRA) have many characteristics of end-stage differentiation. These include the expression of surface KLRG1 and CD57, reduced replicative capacity, decreased survival, and high expression of nuclear γH2AX after TCR activation. A paradoxical observation was that although CD4(+) EMRA T cells exhibit defective telomerase activity after activation, they have significantly longer telomeres than central memory (CM)-like (CD27(+)CD45RA(-)) and EM (CD27(-)CD45RA(-)) CD4(+) T cells. This suggested that telomerase activity was actively inhibited in this population. Because proinflammatory cytokines such as TNF-α inhibited telomerase activity in T cells via a p38 MAPK pathway, we investigated the involvement of p38 signaling in CD4(+) EMRA T cells. We found that the expression of both total and phosphorylated p38 was highest in the EM and EMRA compared with that of other CD4(+) T cell subsets. Furthermore, the inhibition of p38 signaling, especially in CD4(+) EMRA T cells, significantly enhanced their telomerase activity and survival after TCR activation. Thus, activation of the p38 MAPK pathway is directly involved in certain senescence characteristics of highly differentiated CD4(+) T cells. In particular, CD4(+) EMRA T cells have features of telomere-independent senescence that are regulated by active cell signaling pathways that are reversible.  相似文献   

15.
Regulatory T cells (Tregs) play a critical role in the maintenance of airway tolerance. We report that inhaled soluble Ag induces adaptive Foxp3(+) Tregs, as well as a regulatory population of CD4(+) T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokine IL-10 or TGF-β prevented the generation of LAP(+) Tregs and Foxp3(+) Tregs in vivo, and the LAP(+) Tregs could also be generated concomitantly with Foxp3(+) Tregs in vitro by culturing naive CD4(+) T cells with Ag and exogenous TGF-β. The LAP(+) Tregs strongly suppressed naive CD4(+) T cell proliferation, and transfer of sorted OVA-specific LAP(+) Tregs in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite extract, nucleotide-binding oligomerization domain containing 2 ligand, and LPS, which are sufficient for blocking airway tolerance, strongly decreased the induction of LAP(+) Tregs. Taken together, we concluded that inducible Ag-specific LAP(+) Tregs can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3(+) Tregs.  相似文献   

16.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

17.
Chemokine-mediated recruitment of regulatory cell subsets to the airway during inflammation and enhancement of their activities are potential strategies for therapeutic development in allergic asthma (AA). In this study, we aim to explore the role of XCL1, a chemokine associated with immune suppression and allergy, on CD4(+)CD25(high)CD127(low/-) regulatory T cell (Treg) function in AA. Flow cytometry and PCR analysis showed a reduction in XCL1 and XCR1 expression in AA Treg compared with healthy control and nonallergic asthmatic counterparts. This reduction in XCL1 expression was associated with the suboptimal regulatory function of Treg in AA. Interestingly, incubation with recombinant human XCL1 significantly increased Treg-mediated suppression and cytotoxicity by up-regulating expression of XCL1 and chief effector molecules of Treg function. Altogether, these results suggest an association between dysregulated XCL1 expression and reduced Treg activities in AA, as well as a potential role of XCL1 in reversing defective Treg function in the disease.  相似文献   

18.
A key suppressor role has recently been ascribed to the natural CD4+CD25+ regulatory T cells (Treg), the removal of which leads to the development of autoimmune disease and aggravated pathogen-induced inflammation in otherwise normal hosts. The repertoire of antigen specificities of Treg is as broad as that of naive T cells, recognizing both self and non-self antigens, enabling Treg to control a broad range of immune responses. Although widely acknowledged to play a role in the maintenance of self-tolerance, recent studies indicate that Treg can be activated and expanded against bacterial, viral and parasite antigens in vivo. Such pathogen-specific Treg can prevent infection-induced immunopathology but may also increase the load of infection and prolong pathogen persistence by suppressing protective immune responses. This review discusses the role of Treg in the prevention of exaggerated inflammation favoring chronicity in bacterial or fungal infections and latency in viral infections. Special attention is given to the role of Treg in the modulation of gastric inflammation induced by Helicobacter pylori infection. Findings in both experimentally infected mice and humans with natural infection indicate that Treg are important in protecting the H. pylori-infected host against excessive gastric inflammation and disease symptoms but on the negative side promote bacterial colonization at the gastric and duodenal mucosa which may increase the risk in H. pylori-infected individuals to develop duodenal ulcers.  相似文献   

19.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

20.
We first synthesized N-pentafluorobenzyl-1-deoxynojirimycin (5F-DNM), one new derivative of 1-deoxynojirimycin (DNM). Effects on human peripheral blood mononuclear cells (PMBC) and secretion of cytokines from human PBMC by 5F-DNM were investigated. It was first found that 5F-DNM remarkably inhibited the secretion of interleukin-4 (IL-4) and had a specific inhibition on the expression of CD4 molecules. 5F-DNM, much less toxic than cyclosporin A, might be used as a new candidate of immunosuppressant for specifically treating Th2-mediated immune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号