首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.  相似文献   

4.
Monomethylated cap structures facilitate RNA export from the nucleus   总被引:71,自引:0,他引:71  
J Hamm  I W Mattaj 《Cell》1990,63(1):109-118
RNA export from the nucleus has been analyzed in Xenopus oocytes. U1 snRNAs made by RNA polymerase II were exported into the cytoplasm, while U1 snRNAs synthesized by RNA polymerase III, and therefore with a different cap structure, remained in the nucleus. Export of the polymerase II-transcribed RNAs was inhibited by the cap analog m7GpppG. Spliced mRNAs carrying monomethylguanosine cap structures were rapidly exported, while hypermethylated cap structures delayed mRNA export. The export of a mutant precursor mRNA unable to form detectable splicing complexes was also significantly delayed by incorporation of a hypermethylated cap structure. The results suggest that the m7GpppN cap structure is likely to be a signal for RNA export from the nucleus.  相似文献   

5.
Export of RNA from the cell nucleus to the cytoplasm occurs through nuclear pore complexes (NPCs). To examine nuclear export of RNA, we have gold-labeled different types of RNA (i.e., mRNA, tRNA, U snRNAs), and followed their export by electron microscopy (EM) after their microinjection into Xenopus oocyte nuclei. By changing the polarity of the negatively charged colloidal gold, complexes with mRNA, tRNA, and U1 snRNA can be formed efficiently, and gold-tagged RNAs are exported to the cytoplasm with kinetics and specific saturation behavior similar to that of unlabeled RNAs. U6 snRNA conjugates, in contrast, remain in the nucleus, as does naked U6 snRNA. During export, RNA-gold was found distributed along the central axis of the NPC, within the nuclear basket, or accumulated at the nuclear and cytoplasmic periphery of the central gated channel, but not associated with the cytoplasmic fibrils. In an attempt to identify the initial NPC docking site(s) for RNA, we have explored various conditions that either yield docking of import ligands to the NPC or inhibit the export of nuclear RNAs. Surprisingly, we failed to observe docking of RNA destined for export at the nuclear periphery of the NPC under any of these conditions. Instead, each condition in which export of any of the RNA-gold conjugates was inhibited caused accumulation of gold particles scattered uniformly throughout the nucleoplasm. These results point to the existence of steps in export involving mobilization of the export substrate from the nucleoplasm to the NPC.  相似文献   

6.
TAP/NXF1 is a conserved mRNA export receptor serving as a link between messenger ribonucleoproteins (mRNPs) and the nuclear pore complex. The mechanism by which TAP recognizes its export substrate is unclear. We show here that TAP is added to spliced mRNP in human cells. We identified a distinct region of TAP that targets it to mRNP. Using yeast two-hybrid screens and in vitro binding studies, we found that this region coincides with a direct binding site for U2AF35, the small subunit of the splicing factor U2AF. This interaction is evolutionarily conserved across metazoa, indicating its significance. We further found in human cells that the exogenously expressed large U2AF subunit, U2AF65, accumulates in spliced mRNP, leading to the recruitment of U2AF35 and TAP. Similarly to TAP, U2AF65 stimulated directly the nuclear export and expression of an mRNA that is otherwise retained in the nucleus. Together with our finding that U2AF is continuously exported from the nucleus, these data suggest that U2AF participates in nuclear export, by facilitating TAP's addition to its mRNA substrates.  相似文献   

7.
The constitutive transport elements (CTEs) of type D retroviruses are cis-acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV-1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason-Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV-1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE-containing lariat occurs when wild-type CTE, but not a mutant form, is inserted into the pre-mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non-functional variants, making these proteins candidates for the sequestered mRNA export factors.  相似文献   

8.
9.
Pre-mRNA processing factors are required for nuclear export   总被引:9,自引:3,他引:6  
  相似文献   

10.
11.
Box C/D snoRNPs, factors essential for ribosome biogenesis, are proposed to be assembled in the nucleoplasm before localizing to the nucleolus. However, recent work demonstrated the involvement of nuclear export factors in this process, suggesting that export may take place. Here we show that there are distinct distributions of U8 pre-snoRNAs and pre-snoRNP complexes in HeLa cell nuclear and cytoplasmic extracts. We observed differential association of nuclear export (PHAX, CRM1, and Ran) factors with complexes in the two extracts, consistent with nucleocytoplasmic transport. Furthermore, we show that the U8 pre-snoRNA in one of the cytoplasmic complexes contains an m3G cap and is associated with the nuclear import factor Snurportin1. Using RNA interference, we show that loss of either PHAX or Snurportin1 results in the incorrect localization of the U8 snoRNA. Our data therefore show that nuclear export and import factors are directly involved in U8 box C/D snoRNP biogenesis. The distinct distribution of U8 pre-snoRNP complexes between the two cellular compartments together with the association of both nuclear import and export factors with the precursor complex suggests that the mammalian U8 snoRNP is exported during biogenesis.  相似文献   

12.
13.
14.
RNA interference in human cells is restricted to the cytoplasm   总被引:31,自引:1,他引:30       下载免费PDF全文
RNA interference (RNAi) is an evolutionarily conserved eukaryotic adaptive response that leads to the specific degradation of target mRNA species in response to cellular exposure to homologous double-stranded RNA molecules. Here, we have analyzed the subcellular location at which RNA degradation occurs in human cells exposed to double-stranded short interfering RNAs. To unequivocally determine whether a given mRNA is subject to degradation in the cytoplasm, the nucleus, or both, we have used the retroviral Rev/RRE system to control whether target mRNAs remain sequestered in the nucleus or are exported to the cytoplasm. In the absence of export, we found that the nuclear level of the RRE-containing target mRNA was not affected by activation of RNAi. In contrast, when nuclear export was induced by expression of Rev, cytoplasmic target mRNAs were effectively and specifically degraded by RNAi. Curiously, when the target mRNA molecule was undergoing active export from the nucleus, induction of RNAi also resulted in a reproducible approximately twofold drop in the level of target mRNA present In the nuclear RNA fraction. As this same mRNA was entirely resistant to RNAi when sequestered in the nucleus, this result suggests that RNAi is able to induce degradation of target mRNAs not only in the cytoplasm but also during the process of nuclear mRNA export. Truly nucleoplasmic mRNAs or pre-mRNAs are, in contrast, resistant to RNAi.  相似文献   

15.
All major nuclear export pathways so far examined follow a general paradigm. Specifically, a complex is formed in the nucleus, containing the export cargo, a member of the importin-beta family of transporters and RanGTP. This complex is translocated across the nuclear pore to the cytoplasm, where hydrolysis of the GTP on Ran is stimulated by the GTPase-activating protein RanGAP. The activity of RanGAP is increased by RanBP1, which also promotes disassembly of RanGTP-cargo-transporter complexes. Here we investigate the role of RanGTP in the export of mRNAs generated by splicing. We show that nuclear injection of a Ran mutant (RanT24N) or the normally cytoplasmic RanGAP potently inhibits the export of both tRNA and U1 snRNA, but not of spliced mRNAs. Moreover, nuclear injection of RanGAP together with RanBP1 blocks tRNA export but does not affect mRNA export. These and other data indicate that export of spliced mRNA is the first major cellular transport pathway that is independent of the export co-factor Ran.  相似文献   

16.
Chen CC  Lee JC  Chang MC 《FEBS letters》2012,586(16):2260-2266
In nucleus, eIF4E regulates the nucleus export of specific mRNA. In this study, altered 4E-BP3 (eIF4E-binding protein 3) expression resulted in profoundly affected cyclin D1 protein levels, partially due to changes in the cytoplasmic cyclin D1 mRNA levels in both U2OS and MCF7 cells, whereas altered 4E-BP1 expression did not affect eIF4E-mediated cyclin D1 mRNA export. 4E-BP3 also affected a subset of growth promoting mRNAs exported in an eIF4-dependent manner. Furthermore, 4E-BP3 interacted with dephosphorylated RPA2 (replication protein A2). The results indicated 4E-BP3 acts as an inhibitor of eIF4E-mediated mRNA export in the examined cells, and 4E-BP3 inhibition of eIF4E-mediated mRNA export is regulated by the phosphorylation state of RPA2.  相似文献   

17.
Retrovirus replication requires specialized transport mechanisms to export genomic mRNA from the nucleus to the cytoplasm of the infected cell. This regulation is mediated by a combination of viral and/or cellular factors that interact with cis-acting RNA export elements linking the viral RNA to the cellular CRM1 or NXF1 nuclear export pathways. Endogenous type D murine LTR retrotransposons (musD) were reported to contain an RNA export element located upstream of the 3'-LTR. Although functionally equivalent, the musD export element, termed the musD transport element, is distinct from the other retroviral RNA export elements, such as the constitutive transport element of simian/Mason-Pfizer monkey retroviruses and the RNA transport element found in rodent intracisternal A-particle LTR retrotransposons. We demonstrate here that the minimal RNA transport element (musD transport element) of musD comprises multiple secondary structure elements that presumably serve as recognition signals for the cellular export machinery. We identified two classes of tertiary interactions, namely kissing loops and a pseudoknot. This work constitutes the first example of an RNA transport element requiring such structural motifs to mediate nuclear export.  相似文献   

18.
19.
In addition to genomic RNA, HIV-1 particles package cellular and spliced viral RNAs. In order to determine the encapsidation mechanisms of these RNAs, we determined the packaging efficiencies and specificities of genomic RNA, singly and fully spliced HIV mRNAs and different host RNAs species: 7SL RNA, U6 snRNA and GAPDH mRNA using RT-QPCR. Except GAPDH mRNA, all RNAs are selectively encapsidated. Singly spliced RNAs, harboring the Rev-responsible element, and fully spliced viral RNAs, which do not contain this motif, are enriched in virions to similar levels, even though they are exported from the nucleus by different routes. Deletions of key motifs (SL1 and/or SL3) of the packaging signal of genomic RNA indicate that HIV and host RNAs are encapsidated through independent mechanisms, while genomic and spliced viral RNA compete for the same trans-acting factor due to the presence of the 5′ common exon containing the TAR, poly(A) and U5-PBS hairpins. Surprisingly, the RNA dimerization initiation site (DIS/SL1) appears to be the main packaging determinant of genomic RNA, but is not involved in packaging of spliced viral RNAs, suggesting a functional interaction with intronic sequences. Active and selective packaging of host and spliced viral RNAs provide new potential functions to these RNAs in the early stages of the virus life cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号