首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the local anesthetic QX222 on the kinetics of miniature endplate currents and acetylcholine induced endplate current fluctuations was studied in voltage clamped cutaneous pectoris muscle of Rana pipiens. Both the endplate current fluctuation spectra and the miniature endplate current decay consisted of two or three components depending upon the holding potential and local anesthetic concentration. The cutoff frequency of each spectral component was equal to the decay rate of its corresponding constituent of the miniature endplate current. Comparison of the relative amplitudes of the spectral and miniature endplate components indicated that QX222 did not act by creating two kinetically distinct populations of acetylcholine receptors. QX222 action could be explained by alteration of the acetylcholine receptors such that they sequentially change conformation form one open state to another. A specific case in which QX222 binds to the open state of the acetyl-choline receptor creating a blocked state, was found to account for the observed relationship between the relative amplitudes of the miniature endplate current and spectral components, as well as the previously observed voltage and concentration sensitivity of the decay rates of endplate current components.  相似文献   

2.
Miniature end-plate currents (MEPC) were recorded in voltage clamped muscle fibers of the rat diaphragm at different degrees of acetylcholinesterase (AChE) inhibition with galanthamine. A model has been suggested connecting the increase in MEPC amplitude with the concentration of a competitive reversible AChE inhibitor. Using the model suggested, the changes in the junctional AChE activity inhibited with different concentrations of galanthamine were estimated. The calculated value of the inhibitory galanthamine constant is 2.8 X 10(-7) M.  相似文献   

3.
The mechanism of cholinolytic action of dipyroxime--reactivator of the phosphorylated acetylcholinesterase were investigated in the rat diaphragm muscle by voltage-clamp technique. Dipyroxime reduced the amplitude and prolonged the decay of the miniature end-plate currents (MEPC) without affecting its exponential nature. Current-voltage relationship exhibited negative conduction in the hyperpolarized region. Dipyroxime increased the voltage dependence of the time constant of MEPC decay (the membrane potential alteration necessary for e-fold change of the decay time constant reduced from 80 to 35 mV). It was concluded that dipyroxime is a very fast blocker of the open end-plate channels.  相似文献   

4.
The properties of the channel of the purified acetylcholine receptor (AChR) were investigated after reconstitution in planar lipid bilayers. The time course of the agonist-induced conductance exhibits a transient peak that relaxes to a steady state value. The macroscopic steady state membrane conductance increases with agonist concentration, reaching saturation at 10(-5) M for carbamylcholine (CCh). The agonist-induced membrane conductance was inhibited by d-tubocurarine (50% inhibition, IC50, at approximately 10(-6) M) and hexamethonium (IC50 approximately 10(-5) M). The single channel conductance, gamma, is ohmic and independent of the agonist. At 0.3 M monovalent salt concentrations, gamma = 28 pS for Na+, 30 pS for Rb+, 38 pS for Cs+, and 50 pS for NH+4. The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of two distinct open states. tau o1 and tau o2, the fast and slow components of the distribution of open times, are independent of the agonist concentration: for CCh this was verified in the range of 10(-6) M less than C less than 10(-3)M. tau 01 and tau o2 are approximately three times longer for suberyldicholine ( SubCh ) than for CCh. tau o1 and tau o2 are moderately voltage dependent, increasing as the applied voltage in the compartment containing agonist is made more positive with respect to the other. At desensitizing concentrations of agonist, the AChR channel openings occurred in a characteristic pattern of sudden paroxysms of channel activity followed by quiescent periods. A local anesthetic derivative of lidocaine ( QX -222) reduced both tau o1 and tau o2. This effect was dependent on both the concentration of QX -222 and the applied voltage. Thus, the AChR purified from Torpedo electric organ and reconstituted in planar lipid bilayers exhibits ion conduction and kinetic and pharmacological properties similar to AChR in intact muscle postsynaptic membranes.  相似文献   

5.
(1) Single myelinated nerve fibers of Rana esculenta were treated with the steroidal alkaloid batrachotoxin, and Na+ currents and Na+-current fluctuations were measured near the resting potential under voltage-clamp conditions. Between test pulses the fibres were held at hyperpolarizing membrane potentials. (2) The spectral density of Na+-current fluctuations was fitted by the sum of a 1/f component and a Lorentzian function. The time constant tau c = 1/(2 pi fc) obtained from the corner frequency fc of the Lorentzian function approximately agreed with the activation time constant tau m of the macroscopic currents. (3) The conductance gamma of a single Na+ channel modified by batrachotoxin was calculated from the integral of the Lorentzian function and the steady-state Na+ current. At the resting potential V = 0 we obtained gamma - 1.6 pS, higher gamma-values of 3.2 and 3.45 pS were found at V = --8 and --16 mV, respectively. (4) The conductance of a modified Na+ channel is significantly lower than the values 6.4 to 8.85 pS reported in the literature for normal Na+ channels. Hence, our experiments are in agreement with the view that batrachotoxin acts in an 'all-or-none' manner on Na+ channels and creates a distinct population of modified channels.  相似文献   

6.
(1) Na+ currents and Na+ current fluctuations were measured in single myelinated nerve fibres of Rana esculenta under voltage-clamp conditions. The process of Na+ inactivation was modified by external treatment with 7 microM Anemonia Toxin II or by internal application of 20 or 40 mM IO3(-). (2) At depolarization of 24 and 32 mV the spectral density of Na+ current fluctuations could be described as the sum of two contributions, Sh(f) and Sm(f), representing the spectrum from fluctuations of the inactivation (h) and activation (m) gates, respectively. At higher depolarizations of 40 and 48 mV the low frequency (h) fluctuations could be better fitted by the sum, Sh1(f)+Sh2(f), of two separate Lorentzian functions. (3) The Na+ current and the variance of Na+ current fluctuations between 150 and 450 ms after depolarization are increased by one order of magnitude after application of Anemonia Toxin II or IO3(-). (4) The kinetics of Na+ current inactivation were described as A1 x exp(-t/tau h1) + A2 x exp(-t/tau h2) + B. The constant, tau h1, of fast Na+ inactivation was the same in normal and modified nerve fibres. The slow inactivation time constant, tau h2, increased with increasing depolarizations in modified fibres but decreased under control conditions. In all cases tau h2 showed a similar voltage dependence as the time constant found by fitting the low frequency fluctuations of Na+ current with one Lorentzian function, Sh(f). (5) It is concluded that Anemonia Toxin II and IO3(-) modify a fraction of Na+ channels in an all-or-none manner. A lower limit of the number of modified Na+ channels is estimated from the Na+ current and the variance Na+ current fluctuations. 7 microM external Anemonia Toxin II modifies more than 17% and 20 or 40 mM internal IO3(-) more than 8% of all Na+ channels. The inactivation gates in modified channels experience an electric field different from that in normal fibres.  相似文献   

7.
We have examined the effect of the charged local anesthetics QX314, QX222, and Procaine on monovalent cation conduction in the Ca2+ release channel of the sheep cardiac sarcoplasmic reticulum. All three blockers only affect cation conductance when present at the cytoplasmic face of the channel. QX222 and Procaine act as voltage-dependent blockers. With 500 Hz filtering, this is manifest as a relatively smooth reduction in single-channel current amplitude most prominent at positive holding potentials. Quantitative analysis gives an effective valence of approximately 0.9 for both ions and Kb(0)s of 9.2 and 15.8 mM for QX222 and Procaine, respectively. Analysis of the concentration dependence of block suggests that QX222 is binding to a single site with a Km of 491 microM at a holding potential of 60 mV. The use of amplitude distribution analysis, with the data filtered at 1 to 2 kHz, reveals that the voltage and concentration dependence of QX222 block occurs largely because of changes in the blocker on rate. The addition of QX314 has a different effect, leading to the production of a substate with an amplitude of approximately one-third that of the control. The substate's occurrence is dependent on holding potential and QX314 concentration. Quantitative analysis reveals that the effect is highly voltage dependent, with a valence of approximately 1.5 caused by approximately equal changes in the on and off rates. Kinetic analysis of the concentration dependence of the substate occurrence reveals positive cooperativity with at least two QX314s binding to the conduction pathway, and this is largely accounted for by changes in the on rate. A paradoxical increase in the off rate at high positive holding potentials and with increasing QX314 concentration at 80 mV suggests the existence of a further QX314-dependent reaction that is both voltage and concentration dependent. The substate block is interpreted physically as a form of partial occlusion in the vestibule of the conduction pathway giving a reduction in single-channel current by electrostatic means.  相似文献   

8.
1. Intact synaptic acetylcholine receptors on freshly isolated rat skeletal-muscle fibres were characterized by their interaction with di-iodinated 125I-labelled alpha-bungarotoxin, acetylcholine and other cholinergic ligands at room temperature (22 deggrees C). 2. The time course and concentration dependence of 125I-labelled alpha-bungarotoxin association conformed to a bimolecular mechanism. In time-course experiments with different concentrations of 125I-labelled alpha-bungarotoxin (1.4--200 nM) the bimolecular-association rate constant, k + 1, was (2.27 +/- 0.49) x 10(4)M-1.S-1 (mean +/- S.D., N = 10). In concentration-dependence experiments, k + 1 was 2.10 x 10(4)M-1.S-1 and 1.74 x 10(4) M-1.S-1 with 10 and 135 min incubations respectively. In association experiments the first-order rate constant was proportional to the 125I-labelled alpha-bungarotoxin concentration. 125I-Labelled alpha-bungarotoxin dissociation was first order with a dissociation constant, k-1, less than or equal to 3 x 10(-6)S(-1) (half-life greater than or equal to 60 h.) The results indicated a single class of high-affinity toxin-binding sites at the end-plate with an equilibrium dissociation constant, Kd, equal to or less than 100 pM. The number of toxin-binding sites was (3.62 +/- 0.46) x 10(7) (mean +/- S.D., n = 22) per rat end-plate. 3. The apparent inhibitor dissociation constants, Ki, for reversible cholinergic ligands were determined by studying their effect at equilibrium on the rate of 125I-labelled alpha-bungarotoxin binding. There was heterogeneity of binding sites for cholinergic ligands, which were independent and non-interacting with antagonists. In contrast agonist affinity decreased with increasing receptor occupancy. Cholinergic ligands in excess inhibited over 90% of 125I-labelled alpha-bungarotoxin binding. 4. Cholinergic ligand binding was accompanied by an increase in entropy, which was greater for the agonist carbachol (delta So = +0.46 kJ.mol-1.K-1) than the antagonist tubocurarine (delta So = +0.26 kJ.mol-1.K-1). 5. The entropy and affinity changes that accompanied agonist binding suggested that agonists induced significant conformational changes in intact acetylcholine receptors. 6. The affinity and specificity of 125I-labelled alpha-bungarotoxin and tubocurarine binding to synaptic acetylcholine receptors from slow and fast muscle fibres were the same. 7. The study of binding only requires milligram amounts of tissue and may have application to other neurobiological studies and to the study of human neuromuscular disorders.  相似文献   

9.
The inhibition of sodium currents by local anesthetics and other blocking compounds was studied in perfused, voltage-clamped segments of squid giant axon. When applied internally, each of the eight compounds studied results in accumulating "use-depnedent" block of sodium currents upon repetitive pulsing. Recovery from block occurs over a time scale of many seconds. In axons treated with pronase to completely eliminate sodium inactivation, six of the compounds induce a time- and voltage-dependent decline of sodium currents after activation during a maintained depolarization. Four of the time-dependent blocking compounds--procaine, 9-aminoacridine, N-methylstrychnine, and QX572--also induce altered sodium tail currents by hindering closure of the activation gating mechanism. Treatment of the axon with pronase abolishes use-dependent block completely by QX222, QX314, 9-aminoacridine, and N-methylstrychnine, but only partially be tetracaine and etidocaine. Two pulse experiments reveal that recovery from block by 9-aminoacridine or N-methyl-strychnine is greatly accelerated after pronase treatment. Pronase treatment abolishes both use-dependent and voltage-dependent block by QX222 and QX314. These results provide support for a direct role of the inactivation gating mechanism in producing the long-lasting use-dependent inhibition brought about by local anesthetic compounds.  相似文献   

10.
The effects of deuterium oxide (D2O) and temperature on the properties of endplate channels were studied in voltage-clamped muscle fibers from the frog Rana pipiens. Studies were performed at temperatures of 8, 12, 16, and 20 degrees C. The single channel conductance (gamma) and mean channel lifetime (tau) were calculated from fluctuation analysis of the acetylcholine-induced end-plate currents. The reversal potential was determined by interpolation of the acetylcholine-induced current-voltage relation. The mean reversal potential was slightly more negative in D2O Ringer's (-7.9 +/- 0.1 mV [+/- SEM]) compared with H2O Ringer's (-5.2 +/- 0.6 mV, P less than 0.01). The single channel conductance was decreased in D2O. This decrease was greater than could be accounted for by the increased viscosity of D2O solutions, and the amount of the decrease was greater at higher temperatures. For example, gamma was 38.4 +/- 1.3 pS (+/- SEM) in H2O Ringer's and 25.7 +/- 1.0 pS in D2O Ringer's for a holding potential of -70 mV at 12 degrees C. The mean channel lifetime was significantly shorter in D2O, and the effect was greater at lower temperatures. There was not a strong effect of solvent on the temperature dependence of gamma. On the other hand, the temperature dependence of the reciprocal mean channel lifetime, alpha (where alpha = 1/tau), was strongly dependent upon the solvent. The single channel conductances showed no demonstrable voltage dependence over the range of -90 to -50 mV in both solvents. The reciprocal mean channel lifetime showed a voltage dependence, which could be described by the relation alpha = B exp(AV). The slope A was not strongly affected by either temperature or the solvent. On the other hand, the intercept B was a strong function of temperature and was weakly dependent upon the solvent, with most values greater in D2O. The D2O effects on alpha were what would be expected if they were due to the properties of D2O as a solvent (solvent isotope effects), while the D2O effects on gamma must also include the exchange of D for H in the vicinity of the selectivity filter (primary and/or secondary kinetic isotope effects).  相似文献   

11.
(1) Na+ currents and Na+-current fluctuations were measured in myelinated frog nerve fibres at 15 degrees C during 7.7 ms depolarizations to V = 40, 60 and 80 mV. (2) The conductance gamma of a single Na+ channel and the number No of channels per node were calculated from ensemble average values of the mean Na+ current and the variance of Na+-current fluctuations. (3) For a hyperpolarizing holding potential of VH = -28 mV the mean values of the channel conductance and number were gamma = 9.8 pS and No = 74000. (4) After changing the holding potential to the resting potential (VH = 0) the conductance gamma increased by a factor of 1.37 whereas the number No decreased by a factor of 0.60. (5) Addition of 8 nM tetrodotoxin at a holding potential of VH = -28 mV increased gamma by a factor of 1.55 and reduced No by a factor of 0.25. (6) The increase of the channel conductance at reduced channel numbers suggests negative cooperativity between Na+ channels in the nodal membrane.  相似文献   

12.
Characterization of azadirachtin binding to Sf9 nuclei in vitro   总被引:1,自引:0,他引:1  
[22,23-(3)H(2)]dihydroazadirachtin was incorporated by Sf9 cells in culture and was bound specifically to the nuclear fraction. The observed association constant of the binding of the radioligand to a purified nuclear fraction was determined to be 0.037 +/- 0.008 min(-1) using a one-phase exponential association equation, and binding appeared to be to a single population of sites. The binding was essentially irreversible, and the dissociation constant was estimated to be 0.00065 +/- 0.00013 min(-1). An association rate constant of 7.3 x 10(6) M(-1) min(-1) was calculated from these data. Binding was saturable, and the receptor number and affinity were determined as B(max) = 23.87 +/- 1.15 pmol/mg protein, K(d) = 18.1 +/- 2.1 nM. The order of potency of semisynthetic azadirachtin analogues for competition for the binding site was as follows (IC(50) in parentheses): azadirachtin (1.55 x 10(-8) M) > dihydroazadirachtin (3.16 x 10(-8) M) > dansyl dihydroazadirachtin (7.40 x 10(-8) M) > DNP-azadirachtin (7.50 x 10(-8) M) > biotin dihydroazadirachtin (1.27 x 10(-7) M) > 11-methoxy 22,23-dihydroazadirachtin (6.67 x 10(-7) M). [Originally published in Volume 34, Archives of Insect Biochemistry and Physiology, 34:461-473 (1997).] Copyright 1997 Wiley-Liss, Inc.  相似文献   

13.
The time-course of multiquantal end-plate currents (EPCs) was compared with monoquantal synaptic responses, i.e., miniature end-plate currents (MEPCs), in voltage-clamped rat diaphragm muscle fibers. In the presence of active acetylcholinesterase (AChE), the time constant of the decay of EPCs, that were composed of 25–140 quanta, was 1.2 times greater than that of MEPCs. After inhibition of AChE with armine or proserine the decay of the EPC was longer than the decay of the MEPC by 10–100 times, and unlike the MEPC, in the majority of synapses it could be described by the sum of two (n=34) or three (n=9) exponentials: monoexponential EPCs were noted in only three cases. The nature and duration of the EPC decay depended on its quantal content. After a reduction in the quantal content a three-exponential EPC decay could be successively reduced to a two- and a mono-exponential decay. A ,slow, component of the EPC decay, unlike the MEPC decay, was extremely sensitive to changes in the membrane potential, and extracellular magnesium ion concentration. When the cholinoceptors were irreversibly blocked by -bungarotoxin the MEPC decay accelerated, and the monoexponential EPC decay initially slowed down before accelerating, but even during a profound blockade the open-times of the ion channels were not affected. It therefore appears that during the generation of multiquantal EPCs when AChE is inhibited, not only does the synchronicity of the ion channel opening change, but so do their kinetics, possibly because of ion channel blockade by endogenous acetylcholine.S. V. Kurashov Institute of Medicine, Russian Ministry of Public Health, Kazan. Translated from Neirofiziologiya, Vol. 24, No. 3, pp. 269–279, May–June, 1992.  相似文献   

14.
The antibiotic gramicidin A (1.10(-6) M) increases the K+ conductance of normal and detubulated frog skeletal muscle fibres in isotonic K2SO4 solution to a steady-state level, which is reached in 6--9 min, and corresponds to 8058 +/- 1669 and 5767 +/- 902 Om-1. 10(-6)/cm2, resp. There is no correlation between the initial K+ conductance and the value of the steady state of gramicidin A-induced conductance (r = 0.24). According to the dimer hypothesis, the dissociation rate constant of the garmicidin channels was found to be 0.006 +/- 0.0001 sec-1. This result supports the suggestion of a higher stability of gramicidin channels in muscle compared to the bimolecular lipid membranes.  相似文献   

15.
This paper briefly reviews the evidence for ionic channels mediating the conductance increase caused by acetylcholine application to the end-plate of skeletal muscle fibers. "Membrane noise" observed during application of constant low concentrations of acetylcholine to an end-plate is thought to arise from the random superposition of many elementary events corresponding to the opening and closing of discrete ion channels. Statistical analysis of acetylcholine-induced noise reveals an elementary conductance event of of 34 pS (1 S = 1 omega-1) amplitude and 1 msec duration at room temperature in rat muscle fibers. Both size and duration of the elementary event are temperature dependent. Analysis of currents induced by application of acetylcholine to the extrasynaptic membrane of chronically denervated fibers shows that the elementary conductance has a similar size but is of much longer duration. Direct recording of square pulse-like currents by a patch clamp method confirms some of the conclusions drawn from fluctuation analysis.  相似文献   

16.
Naka T 《Bio Systems》1999,49(2):143-149
The process of neurotransmitter release at the neuromuscular junction needs to be represented appropriately in modeling of the synaptic chemical transmission as a reaction-diffusion system. The release mechanisms of the expanding pore and the acceleration are analyzed by the computer simulation with respect to the effects of the characteristic parameters in the mechanisms on spontaneous generation of the miniature endplate current (MEPC), leading to the following evaluation. In the expanding pore mechanism the expanding rate of the pore more than 10 nm ms(-1) and the diffusion coefficient of acetylcholine in the synaptic cleft (D(c)) of about 1.0 x 10(-6) cm2 s(-1) yield the maximum amplitude, the rise time and the decay time constant of the MEPC in agreement with the empirical data. In the active release mechanism the 10-fold acceleration of the natural diffusion and a similar value of D(c) are required to suit for the empirical MEPC.  相似文献   

17.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

18.
To identify the effects of exercise recovery mode on cutaneous vascular conductance (CVC) and sweat rate, eight healthy adults performed two 15-min bouts of upright cycle ergometry at 60% of maximal heart rate followed by either inactive or active (loadless pedaling) recovery. An index of CVC was calculated from the ratio of laser-Doppler flux to mean arterial pressure. CVC was then expressed as a percentage of maximum (%max) as determined from local heating. At 3 min postexercise, CVC was greater during active recovery (chest: 40 +/- 3, forearm: 48 +/- 3%max) compared with during inactive recovery (chest: 21 +/- 2, forearm: 25 +/- 4%max); all P < 0.05. Moreover, at the same time point sweat rate was greater during active recovery (chest: 0.47 +/- 0.10, forearm: 0.46 +/- 0.10 mg x cm(-2) x min(-1)) compared with during inactive recovery (chest: 0.28 +/- 0.10, forearm: 0.14 +/- 0.20 mg x cm(-2) x min(-1)); all P < 0.05. Mean arterial blood pressure, esophageal temperature, and skin temperature were not different between recovery modes. These data suggest that skin blood flow and sweat rate during recovery from exercise may be modulated by nonthermoregulatory mechanisms and that sustained elevations in skin blood flow and sweat rate during mild active recovery may be important for postexertional heat dissipation.  相似文献   

19.
The purpose of this study is to develop an apparatus for simultaneous measurement of electrical and spectroscopic parameters of single ion channels. We have combined the single channel recording apparatus with an artificial lipid bilayer and a fluorescence microscope designed to detect single fluorescent molecules. The artificial membranes were formed on an agarose-coated glass and observed with an objective-type total internal reflection fluorescence microscope (TIRFM). The lateral motion of a single lipid molecule (beta-BODIPY 530/550 HPC) was recorded. The lateral diffusion constant of the lipid molecule was calculated from the trajectories of single molecules as D = 8.5 +/- 4.9 x 10(-8) cm(2)/s. Ionic channels were incorporated into the membrane and current fluctuations were recorded at the single-channel level. After incorporation of Cy3-labeled alametithin molecules into the membrane, bright spots were observed moving rather slowly (D = 4.0 +/- 1.6 x 10(-8) cm(2)/s) in the membrane, simultaneously with the alametithin-channel current. These data show the possibility of the present technique for simultaneous measurement of electrical and spectroscopic parameters of single-channel activities.  相似文献   

20.
Ionic currents of normal and aconitine modified sodium channels of the Ranvier node membrane were measured under voltage clamp conditions. The experiments with local anesthetics in the external Ringer solution have showed that dissociation constant (Kdis) of normal channel-anesthetic complex for procaine is 0.27 + 0.03 mM, and for benzocaine is 0.68 +/- 0.04 mM. With aconitine modified channels, Kdis increases and becomes 1.32 +/- 0.5 mM and 1.52 +/- 0.3 mM for procaine and benzocaine, respectively. It is ascertained that the development of aconitine effect is inhibited by neutral benzocaine to a lesser extent than by procaine. It is shown that the aconitine effect cannot be reversed by a high concentration of anesthetic. Hence, it appears that aconitine and anesthetic receptors do not coincide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号