首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

2.
The troponin I (TnI) gene of Drosophila melanogaster encodes a family of 10 isoforms resulting from the differential splicing of 13 exons. Four of these exons (6a1, 6a2, 6b1, and 6b2) are mutually exclusive and very similar in sequence. TnI isoforms show qualitative specificity whereby each muscle expresses a selected repertoire of them. In addition, TnI isoforms show quantitative specificity whereby each muscle expresses characteristic amounts of each isoform. In the mutant heldup3, the development of the thoracic muscles DLM, DVM, and TDT is aborted. The mutation consists of a one-nucleotide displacement of the 3' AG splice site at the intron preceding exon 6b1, resulting in the failure to produce all exon 6b1-containing TnI isoforms. These molecular changes in a constituent of the thin filaments cause the selective failure to develop the DLM, DVM, and TDT muscles while having no visible effect on other muscles wherein exon 6b1 expression is minor.  相似文献   

3.
McKay RT  Saltibus LF  Li MX  Sykes BD 《Biochemistry》2000,39(41):12731-12738
Structural studies have shown that the regulatory domains of skeletal and cardiac troponin C (sNTnC and cNTnC) undergo different conformational changes upon Ca(2+) binding; sNTnC "opens" with a large exposure of the hydrophobic surface, while cNTnC retains a "closed" conformation similar to that in the apo state. This is mainly due to the fact that there is a defunct Ca(2+)-binding site I in cNTnC. Despite the striking difference, the two proteins bind their respective troponin I (TnI) regions (sTnI(115-131) and cTnI(147-163), respectively) in a similar open fashion. Thus, there must exist a delicate energetic balance between Ca(2+) and TnI binding and the accompanying conformational changes in TnC for each system. To understand the coupling between Ca(2+) and TnI binding and the concomitant structural changes, we have previously engineered an E41A mutant of sNTnC and demonstrated that this mutation drastically reduced the Ca(2+)-binding affinity of site I in sNTnC, and as a result, E41A-sNTnC remains closed in the Ca(2+)-bound state. In the present work, we investigated the interaction of E41A-sNTnC with the sTnI(115-131) peptide and found that the peptide binds to the Ca(2+)-saturated E41A-sNTnC with a 1:1 stoichiometry and a dissociation constant of 300 +/- 100 microM. The peptide-induced chemical shift changes resemble those of Ca(2+) binding to sNTnC, suggesting that sTnI(115-131) induces the "opening" of E41A-sNTnC. In addition, the binding of sTnI(115-131) appears to be accompanied by a conformational change in site I of E41A-sNTnC so that the damaged regulatory site can bind Ca(2+) more tightly. Without Ca(2+), sTnI(115-131) only interacts with E41A-sNTnC nonspecifically. When Ca(2+) is titrated into E41A-sNTnC in the presence of sTnI(115-131), the Ca(2+)-binding affinity of site I was enhanced by approximately 5-fold as compared to when sTnI(115-131) was not present. These observations suggest that the binding of Ca(2+) and TnI is intimately coupled to each other. Together with our previous studies on Ca(2+) and TnI peptide binding to sNTnC and cNTnC, these results allow us to dissect the mechanism and energetics of coupling of ligand binding and structural opening intricately involved in the regulation of skeletal and cardiac muscle contraction.  相似文献   

4.
Small-angle x-ray diffraction from isolated muscle preparations is commonly used to obtain time-resolved structural information during contraction. We extended this technique to the thoracic flight muscles of living fruit flies, at rest and during tethered flight. Precise measurements at 1-ms time resolution indicate that the myofilament lattice spacing does not change significantly during oscillatory contraction. This result is consistent with the notion that a net radial force maintains the thick filaments at an equilibrium interfilament spacing of approximately 56 nm throughout the contractile cycle. Transgenic flies with amino-acid substitutions in the conserved phosphorylation site of the myosin regulatory light chain (RLC) exhibit structural abnormalities that can explain their flight impairment. The I(20)/I(10) equatorial intensity ratio of the mutant fly is 35% less than that of wild type, supporting the hypothesis that myosin heads that lack phosphorylated RLC remain close to the thick filament backbone. This new experimental system facilitates investigation of the relation between molecular structure and muscle function in living organisms.  相似文献   

5.
The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.  相似文献   

6.
During myofibrillogenesis, many muscle structural proteins assemble to form the highly ordered contractile sarcomere. Mutations in these proteins can lead to dysfunctional muscle and various myopathies. We have analyzed the Drosophila melanogaster troponin T (TnT) up1 mutant that specifically affects the indirect flight muscles (IFM) to explore troponin function during myofibrillogenesis. The up1 muscles lack normal sarcomeres and contain "zebra bodies," a phenotypic feature of human nemaline myopathies. We show that the up(1) mutation causes defective splicing of a newly identified alternative TnT exon (10a) that encodes part of the TnT C terminus. This exon is used to generate a TnT isoform specific to the IFM and jump muscles, which during IFM development replaces the exon 10b isoform. Functional differences between the 10a and 10b TnT isoforms may be due to different potential phosphorylation sites, none of which correspond to known phosphorylation sites in human cardiac TnT. The absence of TnT mRNA in up1 IFM reduces mRNA levels of an IFM-specific troponin I (TnI) isoform, but not actin, tropomyosin, or troponin C, suggesting a mechanism controlling expression of TnT and TnI genes may exist that must be examined in the context of human myopathies caused by mutations of these thin filament proteins.  相似文献   

7.
The tailspike protein of bacteriophage P22 assembles with mature capsids during the final reaction in phage morphogenesis. The gene 9 mutation hmH3034 synthesizes a tailspike protein with a change at amino acid 100 from Asp to Asn. This mutant form of trimeric tailspike protein fails to assemble with capsids in vivo. By using in vitro quantitative tailspike-capsid assembly assays, this mutant tailspike trimer can be shown to assemble with capsids at very high tailspike concentrations. From these assays, we estimate that this single missense mutation decreases by 100-500-fold the affinity of the tailspike for capsids. Furthermore, hmH3034 tailspike protein has a structural defect which makes the mature tailspike trimers sensitive to SDS at room temperature and causes the trimers to "partially unfold." Spontaneously arising intragenic suppressors of the capsid assembly defect have been isolated. All of these suppressors are changes at amino acid 13 of the tailspike protein, which substitute His, Leu or Ser for the wild type amino acid Arg. These hmH3034/sup3034 mutants and the separated sup3034 mutants form fully functional tailspike proteins with assembly activities indistinguishable from wild type while retaining the SDS-sensitive structural defect. From the analysis of the hmH3034 mutant and its suppressors, we propose that in the wild-type tailspike protein, the Asp residue at position 100 and the Arg residue at position 13 form an intrachain or interchain salt bridge which stabilizes the amino terminus of the tailspike protein and that the unneutralized positive charge at amino acid 13 in the hmH3034 protein is the cause of the assembly defect of this protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
A cDNA for rabbit fast skeletal muscle troponin I (TnI) was isolated and sequenced. The clone contains a coding sequence predicting a 182-amino-acid protein with a molecular mass of 21,162 daltons. The translated sequence is different from that reported by Wilkinson and Grand (Wilkinson, J. M., and Grand, R. J. A. (1978) Nature 271, 31-35) in that Arg-153, Asp-154, and Leu-155 must be inserted into their original sequence. Amino acid sequencing of adult rabbit TnI confirmed this result. In order to investigate the role of the NH2 terminus of TnI in its biological activity, we have expressed a recombinant deletion mutant (TnId57), which lacks residues 1-57, in a bacterial expression system. Both wild type TnI (WTnI) and TnId57 inhibited acto-S1-ATPase activity and this inhibition could be fully reversed by troponin C (TnC) in the presence of Ca2+. Additionally both WTnI and TnId57 bound to an actin affinity column. Thus, both inhibitory actin binding and Ca(2+)-dependent neutralization by TnC were retained in TnId57. TnC affinity chromatography was used to compare the binding of TnI and TnId57 to TnC. Using this method, two types of interaction between TnC and TnI were observed: 1) one which is metal independent (or structural) and 2) one dependent on Ca2+ or Mg2+ binding to the Ca(2+)-Mg2+ sites of TnC. The same experiments with TnId57 demonstrated that the type 1 interaction was weakened, and type 2 binding was lost. This method also revealed an interaction between TnC and TnI which is dependent upon Ca2+ binding to the Ca(2+)-specific sites of TnC and which is retained in TnId57. Taken together, these results suggest that the NH2 terminus of TnI may constitute a Ca(2+)-Mg(2+)-dependent interaction site between TnC and TnI and play, in part, a structural role in maintaining the stability of the troponin complex while the COOH terminus of TnI contains a Ca(2+)-specific site-dependent interaction site for TnC as well as the previously demonstrated Ca(2+)-sensitive inhibitory and actin binding activities.  相似文献   

10.
Y. H. Chiu  N. R. Morris 《Genetics》1997,145(3):707-714
NudC encodes a protein of unknown biochemical function that is required for nuclear migration. In an attempt to define its function by identifying interacting proteins, a screen for extragenic suppressors of the temperature-sensitive nudC3 mutation was undertaken that identified nine snc genes. Here we demonstrate that nudC3 has a missense mutation at amino acid 146 that causes leucine to be replaced by proline and that sncB69 encodes a mutant tRNA(Leu) that corrects the mutation. The sncB69 mutation deletes a single nucleotide in the anticodon of a tRNA(Leu) that changes its normal (5')CAG(3') leucine anticodon to the proline anticodon (5')CGG(3'), which presumably allows incorporation of leucine at the mutant nudC3 proline codon 146 and thereby causes suppression of the nudC3 mutant phenotype.  相似文献   

11.
Class V myosins move diverse intracellular cargoes, which attach via interaction of cargo-specific proteins to the myosin V globular tail. The globular tail of the yeast myosin V, Myo2p, contains two structural and functional subdomains. Subdomain I binds to the vacuole-specific protein, Vac17p, while subdomain II likely binds to an as yet unidentified secretory vesicle-specific protein. All functions of Myo2p require the tight association of subdomains I and II, which suggests that binding of a cargo to one subdomain may inhibit cargo-binding to a second subdomain. Thus, two types of mutations are predicted to specifically affect a subset of Myo2p cargoes: first are mutations within a cargo-specific binding region; second are mutations that mimic the inhibited conformation of one of the subdomains. Here we analyze a point mutation in subdomain I, myo2-2(G1248D), which is likely to be this latter type of mutation. myo2-2 has no effect on secretory vesicle movement. The secretory vesicle binding site is in subdomain II. However, myo2-2 is impaired in several Myo2p-related functions. While subdomains I and II of myo2-2p tightly associate, there are measurable differences in the conformation of its globular tail. Based solely on the ability to restore vacuole inheritance, a set of intragenic suppressors of myo2-2 were identified. All suppressor mutations reside in subdomain I. Moreover, subdomain I and II interactions occurred in all suppressors, demonstrating the importance of subdomain I and II association for Myo2p function. Furthermore, 3 of the 10 suppressors globally restored all tested defects in myo2-2. This large proportion of global suppressors strongly suggests that myo2-2(G1248) causes a conformational change in subdomain I that simultaneously affects multiple cargoes.  相似文献   

12.
Jin JP  Yang FW  Yu ZB  Ruse CI  Bond M  Chen A 《Biochemistry》2001,40(8):2623-2631
The primary structure of the COOH-terminal region of troponin I (TnI) is highly conserved among the cardiac, slow, and fast skeletal muscle TnI isoforms and across species. Although no binding site for the other thin filament proteins is found at the COOH terminus of TnI, truncations of the last 19-23 amino acid residues reduce the activity of TnI in the inhibition of actomyosin ATPase and result in cardiac muscle malfunction. We have developed a specific monoclonal antibody (mAb), TnI-1, against the conserved COOH terminus of TnI. Using this mAb, isolation of the troponin complex by immunoaffinity chromatography from muscle homogenate and immunofluorescence microscopic staining of myofibrils indicate that the COOH terminus of TnI forms an exposed structure in the muscle thin filament. Binding of this mAb to the COOH terminus of cardiac TnI induced extensive conformational changes in the protein, suggesting an allosteric role of this region in the functional integrity of troponin. In the absence of Ca2+, the binding of troponin C and troponin T to TnI had very little effect on the conformation of the COOH terminus of TnI as indicated by the unaffected mAb affinity for the TnI-1 epitope. However, Ca2+ significantly increased the accessibility of the TnI-1 epitope on TnI in the presence of troponin C and troponin T. The results provide evidence that the COOH terminus is an essential structure in TnI and participates in the allosteric switch during Ca2+ activation of contraction.  相似文献   

13.

Background

The Bacillus subtilis genes dnaD and dnaB are essential for the initiation of DNA replication and are required for loading of the replicative helicase at the chromosomal origin of replication oriC. Wild type DnaD and DnaB interact weakly in vitro and this interaction has not been detected in vivo or in yeast two-hybrid assays.

Methodology/Principal Findings

We isolated second site suppressors of the temperature sensitive phenotypes caused by one dnaD mutation and two different dnaB mutations. Five different intragenic suppressors of the dnaD23ts mutation were identified. One intragenic suppressor was a deletion of two amino acids in DnaD. This deletion caused increased and detectable interaction between the mutant DnaD and wild type DnaB in a yeast two-hybrid assay, similar to the increased interaction caused by a missense mutation in dnaB that is an extragenic suppressor of dnaD23ts. We isolated both intragenic and extragenic suppressors of the two dnaBts alleles. Some of the extragenic suppressors were informational suppressors (missense suppressors) in tRNA genes. These suppressor mutations caused a change in the anticodon of an alanine tRNA so that it would recognize the mutant codon (threonine) in dnaB and likely insert the wild type amino acid (alanine).

Conclusions/Significance

The intragenic suppressors should provide insights into structure-function relationships in DnaD and DnaB, and interactions between DnaD and DnaB. The extragenic suppressors in the tRNA genes have important implications regarding the amount of wild type DnaB needed in the cell. Since missense suppressors are typically inefficient, these findings indicate that production of a small amount of wild type DnaB, in combination with the mutant protein, is sufficient to restore some DnaB function.  相似文献   

14.
An X-linked mutant of Drosophila melanogaster was isolated which was completely unable to fly. The map position of the mutation is 43 +/- 0.1. Gynandromorph analysis indicated that the mutation is autonomously expressed in the flight muscle. Fate-map data show that the focus of the mutation lies close to the ventral midline of the blastoderm. Flightlessness appears to be the result of abnormalities of the thoracic musculature, including highly irregular arrangement of the fibrils, lack of the normal striation pattern and abnormal structure of the mitochondria. X-ray microanalysis (EDAX) demonstrates a pronounced difference in the distribution of calcium in mutant and wild-type flight muscle at the fine-structural level. We propose that an abnormal calcium distribution in the mutant may be associated with the ultrastructural abnormalities and ultimately responsible for the flightless phenotype.  相似文献   

15.
A site directed mutant of the Photosystem I reaction center of Chlamydomonas reinhardtii has been described previously. [Hallahan et al. (1995) Photosynth Res 46: 257–264]. The mutation, PsaA: D576L, changes the conserved aspartate residue adjacent to one of the cysteine ligands binding the Fe-SX center to PsaA. The mutation, which prevents photosynthetic growth, was observed to change the EPR spectrum of the Fe-SA/B centers bound to the PsaC subunit. We suggested that changes in binding of PsaC to the PsaA/PsaB reaction center prevented efficient electron transfer. Second site suppressors of the mutation have now been isolated which have recovered the ability to grow photosynthetically. DNA analysis of four suppressor strains showed the original D576L mutation is intact, and that no mutations are present elsewhere within the Fe-SX binding region of either PsaA or PsaB, nor within PsaC or PsaJ. Subsequent genetic analysis has indicated that the suppressor mutation(s) is nuclear encoded. The suppressors retain the altered binding of PsaC, indicating that this change is not the cause of failure to grow photosynthetically. Further analysis showed that the rate of electron transfer from the quinone electron carrier A1 to Fe-SX is slowed in the mutant (by a factor of approximately two) and restored to wild type rates in the suppressors. ENDOR spectra of A1 ·– in wild-type and mutant preparations are identical, indicating that the electronic structure of the phyllosemiquinone is not changed. The results suggest that the quinone to Fe-SX center electron transfer is sensitive to the structure of the iron-sulfur center, and may be a critical step in the energy conversion process. They also indicate that the structure of the reaction center may be modified as a result of changes in proteins outside the core of the reaction center.  相似文献   

16.
Luo Y  Leszyk J  Li B  Gergely J  Tao T 《Biochemistry》2000,39(50):15306-15315
Skeletal muscle troponin C (TnC) adopts an extended conformation when crystallized alone and a compact one when crystallized with an N-terminal troponin I (TnI) peptide, TnI(1-47) [Vassylyev et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4847-4852]. The N-terminal region of TnI (residues 1-40) was suggested to play a functional role of facilitating the movement of TnI's inhibitory region between TnC and actin [Tripet et al. (1997) J. Mol. Biol. 271, 728-750]. To test this hypothesis and to investigate the conformation of TnC in the intact troponin complex and in solution, we attached fluorescence and photo-cross-linking probes to a mutant TnI with a single cysteine at residue 6. Distances from this residue to residues of TnC were measured by the fluorescence resonance energy transfer technique, and the sites of photo-cross-linking in TnC were determined by microsequencing and mass spectrometry following enzymatic digestions. Our results show that in the troponin complex neither the distance between TnI residue 6 and TnC residue 89 nor the photo-cross-linking site in TnC, Ser133, changes with Ca(2+), in support of the notion that this region plays mainly a structural rather than a regulatory role. The distances to residues 12 and 41 in TnC's N-domain are both considerably longer than those predicted by the crystal structure of TnC.TnI(1-47), supporting an extended rather than a compact conformation of TnC. In the binary TnC.TnI complex and the presence of Ca(2+), Met43 in TnC's N-domain was identified as the photo-cross-linking site, and multiple distances between TnI residue 6 and TnC residue 41 were detected. This was taken to indicate increased flexibility in TnC's central helix and that TnC dynamically changes between a compact and an extended conformation when troponin T (TnT) is absent. Our results further emphasize the difference between the binary TnC.TnI and the ternary troponin complexes and the importance of using intact proteins in the study of structure-function relationships of troponin.  相似文献   

17.
Akazara scallop (Chlamys nipponensis akazara) troponin C (TnC) of striated adductor muscle binds only one Ca2+ ion at the C-terminal EF-hand motif (Site IV), but it works as the Ca2+-dependent regulator in adductor muscle contraction. In addition, the scallop troponin (Tn) has been thought to regulate muscle contraction via activating mechanisms that involve the region spanning from the TnC C-lobe (C-lobe) binding site to the inhibitory region of the TnI, and no alternative binding of the TnI C-terminal region to TnC because of no similarity between second TnC-binding regions of vertebrate and the scallop TnIs. To clarify the Ca2+-regulatory mechanism of muscle contraction by scallop Tn, we have analyzed the Ca2+-binding properties of the complex of TnC C-lobe and TnI peptide, and their interaction using isothermal titration microcalorimetry, nuclear magnetic resonance, circular dichroism, and gel filtration chromatography. The results showed that single Ca2+-binding to the Site IV leads to a structural transition not only in Site IV but also Site III through the structural network in the C-lobe of scallop TnC. We therefore assumed that the effect of Ca2+-binding must lead to a change in the interaction mode between the C-lobe of TnC and the TnI peptide. The change should be the first event of the transmission of Ca2+ signal to TnI in Tn ternary complex.  相似文献   

18.
19.
We have investigated the molecular bases of muscle abnormalities in four Drosophila melanogaster heldup mutants. We find that the heldup gene encodes troponin-I, one of the principal regulatory proteins associated with skeletal muscle thin filaments. heldup3, heldup4, and heldup5 mutants, all of which have grossly abnormal flight muscle myofibrils, lack mRNAs encoding one or more troponin-I isoforms. In contrast, heldup2, an especially interesting mutant wherein flight muscles are atrophic, synthesizes the complete mRNA complement. By sequencing mutant troponin-I cDNAs we demonstrate that the molecular basis for muscle degeneration in heldup2 is conversion of an invariant alanine residue to valine. We finally show that degeneration of heldup2 thin filament/Z-disc networks can be prevented by eliminating thick filaments from flight muscles using a null allele of the sarcomeric myosin heavy chain gene. This latter observation suggests that actomyosin interactions exacerbate the structural or functional defect resulting from the troponin-I mutation.  相似文献   

20.
We have isolated a new conditional-lethal mutation, ndc10-2, in the NDC10/CBF2/CTF14 gene that encodes the 110-kD subunit of the Saccharomyces cerevisiae CBF3 kinetochore complex. At the restrictive temperature of 37°, ndc10-2 cells are able to assemble anaphase spindles, but fail to segregate their DNA, consistent with a defect in kinetochore function. To identify other factors that play a role in kinetochore assembly or function, we isolated both dosage and second site suppressors of the ndc10-2 mutation. These screens identified UBC6 as a dosage suppressor, and mutations in UBC6 and UBC7 as second-site suppressors of ndc10-2 heat sensitivity. Both UBC6 and UBC7 encode ubiquitin-conjugating enzymes that function in ubiquitin-mediated protein degradation. Furthermore, overexpression of a mutant ubiquitin suppresses the ndc10-2 mutation. These results implicate the ubiquitin system in the regulation of ndc10-2 function and suggest a role for the ubiquitin system in kinetochore function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号