首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a robotic walking simulator for gait rehabilitation]   总被引:1,自引:0,他引:1  
Restoration of gait is a major concern of rehabilitation after stroke or spinal cord injury. Modern concepts of motor learning favour a task-specific repetitive approach, i.e. "whoever wants to learn to walk again must walk." However, the physical demands this places on the therapist, is a limiting factor in the clinical routine setting. This article describes a robotic walking simulator for gait training that enables wheelchair-bound subjects to freely carry out repetitive practicing of an individually adapted gait pattern under simulation of the manual guidance of an experienced therapist. The technical principle applied makes use of programmable footplates with permanent foot/machine contact in combination with compliance control. The solution chosen comprises a planar parallel-serial hybrid kinematic system with three degrees of freedom that moves the feet in the sagittal plane. Gait analysis while floor walking and stair climbing, clinical practicability and safety aspects were the basis for the design. A variable compliance control enables man-machine interaction, ranging from purely position controlled movement to full compliance during swing phase above a virtual ground profile. In full compliance mode the robotic walking simulator behaves like a haptic device. The concept presented offers new prospects for individualized gait rehabilitation.  相似文献   

2.
In this paper we examine a method to control the stepping motion of a paralyzed person suspended over a treadmill using a robot attached to the pelvis. A leg swing motion is created by moving the pelvis without contact with the legs. The problem is formulated as an optimal control problem for an underactuated articulated chain. The optimal control problem is converted into a discrete parameter optimization and an efficient gradient-based algorithm is used to solve it. Motion capture data from an unimpaired human subject is compared to the simulation results from the dynamic motion optimization. Our results suggest that it is feasible to drive repetitive stepping on a treadmill by a paralyzed person by assisting in torso movement alone. The optimized, pelvic motion strategies are comparable to "hip-hiking" gait strategies used by people with lower limb prostheses or hemiparesis. The resulting motions can be found at the web site http://ww.eng.uci.edu/-chwang/project/stepper/stepper.html.  相似文献   

3.
The purpose of this study was to determine the contribution of individual ankle muscles to the net ankle power and to examine each muscle’s role in propulsion or support of the body during normal, self-selected-speed walking. An EMG-to-force processing (EFP) model was developed which scaled muscle tendon unit force output to gait EMG, with that muscle’s power output being the product of muscle force and contraction velocity. Net EFP power was determined by summing individual ankle muscle power. Net ankle power was also calculated for these subjects via inverse dynamics. Closeness of fit of the power curves of the two methods was used to validate the model. The curves were highly correlated (r2 = .91), thus the model was deconstructed to analyze the power contribution and role of each ankle muscle during normal gait. Key findings were that the plantar flexors control tibial rotation in single support, and act to propel the entire limb into swing phase. The dorsiflexors provide positive power for swing phase foot clearance, negative power to control early stance phase foot placement, and a second positive power burst to actively advance the tibia in the transition from double to single support. Co-contraction of agonists and antagonists was limited to only a small percentage of the gait cycle.  相似文献   

4.
Introduction: Increased ankle muscle coactivation during gait is a compensation strategy for enhancing postural stability in patients after stroke. However, no previous studies have demonstrated that increased ankle muscle coactivation influenced ankle joint movements during gait in patients after stroke.

Purpose: To investigate the relationship between ankle muscle coactivation and ankle joint movements in hemiplegic patients after stroke.

Methods: Seventeen patients after stroke participated. The coactivation index (CoI) at the ankle joint was calculated separately for the first and second double support (DS1 and DS2, respectively) and single support (SS) phases on the paretic and non-paretic sides during gait using surface electromyography. Simultaneously, three-dimensional motion analysis was performed to measure the peak values of the ankle joint angle, moment, and power in the sagittal plane. Ground reaction forces (GRFs) of the anterior and posterior components and centers of pressure (COPs) trajectory ranges and velocities were also measured.

Results: The CoI during the SS phase on the paretic side was negatively related to ankle dorsiflexion angle, ankle plantarflexion moment, ankle joint power generation, and COP velocity on the paretic side. Furthermore, the CoI during the DS2 phase on both sides was negatively related to anterior GRF amplitude on each side.

Conclusion: Increased ankle muscle coactivation is related to decreased ankle joint movement during the SS phase on the paretic side to enhance joint stiffness and compensate for stance limb instability, which may be useful for patients who have paretic instability during the stance phase after stroke.  相似文献   


5.
This study focuses on the parameter characterisation of a three-element phenomenological model for commercially available pneumatic muscle actuators (PMAs). This model consists of a spring, damping and contractile element arranged in parallel. Data collected from static loading, contraction and relaxation experiments were fitted to theoretical solutions of the governing equation for the three-element model resulting in prediction profiles for the spring, damping and contractile force coefficient. For the spring coefficient, K N/mm, the following relationships were found: K = 32.7 ? 0.0321P for 150 ≤ P ≤ 314 kPa and K = 17 + 0.0179P for 314 ≤ P ≤ 550 kPa. For the damping coefficient, B Ns/mm, the following relationship was found during contraction: B = 2.90 for 150 ≤ P ≤ 550 kPa. During relaxation, B = 1.57 for 150 ≤ P ≤ 372 kPa and B = 0.311 + 0.00338P for 372 ≤ P ≤ 550. The following relationship for the contractile force coefficient, F ce N, was also determined: F ce = 2.91P+44.6 for 150 ≤ P ≤ 550 kPa. The model was then validated by reasonably predicting the response of the PMA to a triangular wave input in pressure under a constant load on a dynamic test station.  相似文献   

6.
The use of exoskeletons as an aid for people with musculoskeletal disorder is the subject to an increasing interest in the research community. These devices are expected to meet the specific needs of users, such as children with cerebral palsy (CP) who are considered a significant population in pediatric rehabilitation. Although these exoskeletons should be designed to ease the movement of people with physical shortcoming, their design is generally based on data obtained from healthy adults, which leads to oversized components that are inadequate to the targeted users. Consequently, the objective of this study is to custom-size the lower limb exoskeleton actuators based on dynamic modeling of the human body for children with CP on the basis of hip, knee, and ankle joint kinematics and dynamics of human body during gait. For this purpose, a multibody modeling of the human body of 3 typically developed children (TD) and 3 children with CP is used. The results show significant differences in gait patterns especially in knee and ankle with respectively 0.39 and ?0.33 (Nm/kg) maximum torque differences between TD children and children with CP. This study provides the recommendations to support the design of actuators to normalize the movement of children with CP.  相似文献   

7.
System identification techniques have been used to track changes in dynamic stiffness of the human ankle joint over a wide range of muscle contraction levels. Subjects lay supine on an experimental table with their left foot encased in a rigid, low-inertia cast which was fixed to an electro-hydraulic actuator operating as a position servo. Subjects generated tonic plantarflexor or dorsiflexor torques of different magnitudes ranging from rest to maximum voluntary contractions (MVC) during repeated presentations of a stochastic ankle angular position perturbation. Compliance impulse response functions (IRF) were determined from every 2.5 s perturbation sequence. The gain (G), natural frequency (omega n), and damping (zeta) parameters of the second-order model providing the best fit to each IRF were determined and used to compute the corresponding inertial (I), viscous (B) and elastic (K) stiffness parameters. The behaviour of these parameters with mean torque was found to follow two simple rules. First, the elastic parameter (K) increased in proportion to mean ankle torque as it was varied from rest to MVC; these changes were considerable involving increases of more than an order of magnitude. Second, the damping parameter (zeta) remained almost invariant over the entire range of contractions despite the dramatic changes in K.  相似文献   

8.
Conventional gait rehabilitation treatment does not provide quantitative information on abnormal gait kinematics, and the match of the intervention strategy to the underlying clinical presentation may be limited by clinical expertise and experience. Also the effect of rehabilitation treatment may be reduced as the rehabilitation treatment is achieved only in a clinical setting. In this paper, a mobile gait monitoring system (MGMS) is proposed for the diagnosis of abnormal gait and rehabilitation. The proposed MGMS consists of Smart Shoes and a microsignal processor with a touch screen display. It monitors patients' gait by observing the ground reaction force (GRF) and the center of GRF, and analyzes the gait abnormality. Since visual feedback about patients' GRFs and normal GRF patterns are provided by the MGMS, patients can practice the rehabilitation treatment by trying to follow the normal GRF patterns without restriction of time and place. The gait abnormality proposed in this paper is defined by the deviation between the patient's GRFs and normal GRF patterns, which are constructed as GRF bands. The effectiveness of the proposed gait analysis methods with the MGMS has been verified by preliminary trials with patients suffering from gait disorders.  相似文献   

9.
The study aimed at further development of a mechanised gait trainer which would allow non-ambulant people to practice a gait-like motion repeatedly. To simulate normal gait, discrete stance and swing phases, lasting 60% and 40% of the gait cycle respectively, and the control of the movement of the centre of mass were required. A complex gear system provided the gait-like movement of two foot plates with a ratio of 60% to 40% between the stance and swing phases. A controlled propulsion system adjusted its output according to patient's efforts. Two eccenters on the central gear controlled phase-adjusted the vertical and horizontal position of the centre of mass. The patterns of sagittal lower limb joint kinematics and of muscle activation of a normal subject were similar when using the mechanised trainer and when walking on a treadmill. A non-ambulatory hemiparetic subject required little help from one therapist on the gait trainer, while two therapists supported treadmill walking. Gait movements on the trainer were highly symmetrical, impact-free, and less spastic. The weight-bearing muscles were activated in a similar fashion during both conditions. The vertical displacement of the centre of mass was bi-instead of mono-phasic during each gait cycle on the new device. In conclusion, the gait trainer allowed wheelchair-bound subjects the repetitive practice of a gait-like movement without overstraining therapists.  相似文献   

10.
EMG-driven models can be used to estimate muscle force in biomechanical systems. Collected and processed EMG readings are used as the input of a dynamic system, which is integrated numerically. This approach requires the definition of a reasonably large set of parameters. Some of these vary widely among subjects, and slight inaccuracies in such parameters can lead to large model output errors. One of these parameters is the maximum voluntary contraction force (Fom). This paper proposes an approach to find Fom by estimating muscle physiological cross-sectional area (PCSA) using ultrasound (US), which is multiplied by a realistic value of maximum muscle specific tension. Ultrasound is used to measure muscle thickness, which allows for the determination of muscle volume through regression equations. Soleus, gastrocnemius medialis and gastrocnemius lateralis PCSAs are estimated using published volume proportions among leg muscles, which also requires measurements of muscle fiber length and pennation angle by US. Fom obtained by this approach and from data widely cited in the literature was used to comparatively test a Hill-type EMG-driven model of the ankle joint. The model uses 3 EMGs (Soleus, gastrocnemius medialis and gastrocnemius lateralis) as inputs with joint torque as the output. The EMG signals were obtained in a series of experiments carried out with 8 adult male subjects, who performed an isometric contraction protocol consisting of 10 s step contractions at 20% and 60% of the maximum voluntary contraction level. Isometric torque was simultaneously collected using a dynamometer. A statistically significant reduction in the root mean square error was observed when US-obtained Fom was used, as compared to Fom from the literature.  相似文献   

11.
Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real EMG data recorded from the subjects doing the same movement.  相似文献   

12.
ObjectiveTo explore the attitudes and beliefs of stroke patients identified by professionals as having either “high” or “low” motivation for rehabilitation.DesignQualitative study with semistructured interviews.SettingThe stroke unit of an inner city teaching hospital.Participants22 patients with stroke who were undergoing rehabilitation; 14 with high motivation for rehabilitation and eight with low motivation.ResultsAll patients thought rehabilitation was important for recovery. High motivation patients were more likely to view rehabilitation as the most important means of recovery and to accord themselves an active role in rehabilitation. These patients were also more likely to understand rehabilitation and in particular to understand the specialist role of the nursing staff. Many patients reported independence at home as a personal goal, though few low motivation patients related this goal to success in rehabilitation. Information from professionals about rehabilitation, favourable comparisons with other stroke patients, and the desire to leave hospital had a positive effect on motivation. Conversely, overprotection from family members and professionals, lack of information or the receipt of “mixed messages” from professionals, and unfavourable comparisons with other patients had a negative effect.ConclusionsThere are some differences in beliefs between stroke patients identified as having low or high motivation for rehabilitation. These beliefs seem to be influenced by the environment in which the patient is rehabilitated. Professionals and carers should be made aware of the ways in which their behaviour can positively and negatively affect motivation.  相似文献   

13.
Sustained muscle stretch (SMS) is commonly used to reduce hypertonia. The present study evaluates the effectiveness of three different SMS protocols, namely constant-angle, cyclic, and constant-torque stretching, in the immediate reducing of ankle hypertonia. Forty-seven hemiplegic subjects, 53.7+/-10.3 years old and 22.4+/-16.0 months after stroke, with hypertonic ankle joints were recruited to undergo three SMS applied to protocols treatment their hypertonic ankle joints using an integrated treatment/assessment system. The immediate post-treatment effectiveness of each stretching protocol was assessed by reference to the pre-treatment Modified Ashworth Scale (MAS), passive range of motion (ROM), and reactive torque measurement, from which the viscous-elastic components of the ankle joint were derived. All three SMS protocols successfully reduced MAS grade. Additionally, each stretching method yielded an increase in ankle ROM, from 9.7 degrees to 16 degrees , 9.6 degrees to 14.8 degrees , and 9.2 degrees to 18.3 degrees for the constant-angle, cyclic-stretching, constant-torque protocols, respectively, and reduction of the elastic and viscous properties of the ankle joint dorsiflexion (p<0.05). The changes in the ROM, elasticity, and viscosity were most pronounced in the case of the constant-torque stretching protocol. In addition to clinical scales, current biomechanical assessments indicate that three SMS protocols are all effective in reducing the immediate viscoelastic components of hypertonic ankle joints. Our quantitative analysis further shows that of the three treatment protocols, the constant-torque treatment is the most effective.  相似文献   

14.
Total ankle replacement (TAR) designs have still several important issues to be addressed before the treatment becomes fully acceptable clinically. Very little is known about the performance, in terms of the contact pressures and kinematics of TAR when subjected to daily activities such as level gait. For this purpose, an explicit finite element model of a novel 3-component TAR was developed, which incorporated a previously validated mechanical model of the ankle ligament apparatus. The intermediate mobile polyethylene meniscal bearing was modelled as an elastic-plastic continuum while the articulating surfaces of the tibial and talar metal components as rigid bodies. Overall kinematics, contact pressures and ligament forces were analysed during passive, i.e. virtually unloaded, and active, i.e. stance phase of gait, conditions. Simulation of passive motion predicted similar kinematics as reported previously in an analytical four-bar linkage model. The meniscal bearing was observed to move 5.6 mm posteriorly during the simulated stance and the corresponding antero-posterior displacement of the talar component was 8.3 mm. The predicted pattern and the amount (10.6 degrees ) of internal-external rotation of the ankle complex were found to be in good agreement with corresponding in vivo measurements on normal ankles. A peak contact pressure of 16.8 MPa was observed, with majority of contact pressures below 10 MPa. For most ligaments, reaction forces remain within corresponding physiological ranges. A first realistic representation of the biomechanical behaviour of the human ankle when replaced by prosthetic joints is provided. The applied methodology can potentially be applied to other TAR designs.  相似文献   

15.
Predictive modelling of human walking over a complete gait cycle   总被引:1,自引:0,他引:1  
  相似文献   

16.
Introduction and rationale: Stroke is a major cause of acquired cerebral disability among adults, frequently accompanied by depression, anxiety, cognitive impairment, disrupted sleep and fatigue. New ways of intervention to prevent these complications are therefore needed. The major circadian regulator, the suprachiasmatic nucleus, is mainly controlled by natural daylight, and the blue spectrum is considered the most powerful. During stroke rehabilitation, patients typically are mostly indoors and therefore not exposed to the natural daytime variation in light intensity. Furthermore, several rehabilitation hospitals may be exposed to powerful light in the blue spectrum, but at a time that is adversely related to their endogenous circadian phase, for example in the late evening instead of the daytime. Hypothesis: Naturalistic light that mimics the natural daytime spectrum variation will have a positive impact on the health of poststroke patients admitted to rehabilitation. We test specifically for improved sleep and less fatigue (questionnaires, polysomnography, Actiwatch), improved well-being (questionnaires), lessen anxiety and depression (questionnaires), improved cognition (tests), stabilizing of the autonomous nervous system (ECG/HR, blood pressure, temperature) and stabilizing of the diurnal biochemistry (blood markers). Study design: The study is a prospective parallel longitudinal randomized controlled study (quasi randomization). Stroke patients in need of rehabilitation will be included at the acute stroke unit and randomized to either the intervention unit (naturalistic lighting) or the control unit (CU) (standard lighting). The naturalistic light is installed in the entire IU (Cromaviso, Denmark). Conclusion: This study aims to elucidate the influence of naturalistic light on patients during long-term hospitalization in a real hospital setting. The hypotheses are based on preclinical research, as studies using naturalistic light have never been performed before. Investigating the effects of naturalistic light in a clinical setting is therefore much needed.  相似文献   

17.
18.
There is an increasing interest in conceiving robotic systems that are able to move and act in an unstructured and not predefined environment, for which autonomy and adaptability are crucial features. In nature, animals are autonomous biological systems, which often serve as bio-inspiration models, not only for their physical and mechanical properties, but also their control structures that enable adaptability and autonomy—for which learning is (at least) partially responsible. This work proposes a system which seeks to enable a quadruped robot to online learn to detect and to avoid stumbling on an obstacle in its path. The detection relies in a forward internal model that estimates the robot’s perceptive information by exploring the locomotion repetitive nature. The system adapts the locomotion in order to place the robot optimally before attempting to step over the obstacle, avoiding any stumbling. Locomotion adaptation is achieved by changing control parameters of a central pattern generator (CPG)-based locomotion controller. The mechanism learns the necessary alterations to the stride length in order to adapt the locomotion by changing the required CPG parameter. Both learning tasks occur online and together define a sensorimotor map, which enables the robot to learn to step over the obstacle in its path. Simulation results show the feasibility of the proposed approach.  相似文献   

19.
Abstract

Background: The purpose of the review is to summarize the literature surrounding the use of muscle vibration as it relates to modifying human gait.

Methods: After a brief introduction concerning historical uses and early research identifying the effect of vibration on muscle activation, we reviewed 32 articles that used muscle vibration during walking. The review is structured to address the literature within four broad categories: the effect of vibration to ‘trigger’ gait-like lower limb motions, the effect of vibration on gait control of healthy individuals and individuals with clinical conditions in which gait disorders are a prominent feature, and the effect of vibration training protocols on gait.

Results: The acute effects of vibration during gait involving healthy participants is varied. Some authors reported differences in segmental kinematic and spatiotemporal measures while other authors reported no differences in these outcome measures. The literature involving participants with clinical conditions revealed that vibration consistently had a significant impact on gait, suggesting vibration may be an effective rehabilitation tool. All of the studies that used vibration therapy over time reported significant improvement in gait performance.

Conclusions: This review highlights the difficulties in drawing definitive conclusions as to the impact of vibration on gait control, partly because of differences in walking protocols, site of vibration application, and outcome measures used across different investigative teams. It is suggested that the development of common investigative methodologies and outcome measures would accelerate the identification of techniques that may provide optimal rehabilitation protocols for individuals experiencing disordered gait control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号