首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of experimental observations, this paper develops two well-defined mathematical models for the level of activity of Pharaoh’s ants within their nesting area, with the aim of providing a more general understanding of animal activity. Under specific conditions, we observe that the activity of ants within their nesting area appears to show no dependence on their density. Making the assumption that all ants move independently of one another, this behaviour can be mathematically modelled as a random process based on the binomial distribution. Developing the model on this basis allows an exponential distribution to be exposed that underlies the time-intervals between ants leaving the nesting area. Such a distribution is present, irrespective of whether the ant population in the nesting area remains constant or steadily depletes, and suggests that ant-ant interactions do not play any significant role in determining ant activity under the experimental conditions adopted.The mathematical framework presented plays the role of a null model that will have a wide range of applications for detecting other determinants of activity-level (not addressed in this study) including environmental and social factors such as food availability, temperature, humidity, presence of pheromone trails, along with intraspecific and interspecific interactions outside the nest and, indeed, more generally. The null model should have applications to a range of organisms.Lastly, we discuss our data in relation to a recent study of ants leaving their nest (Richardson et al., 2010) in which the null model was rejected in favour of record dynamics, where ant-ant interactions were conjectured to play a role.  相似文献   

2.
During colony growth, leaf-cutting ants enlarge their nests by excavating tunnels and chambers housing their fungus gardens and brood. Workers are expected to excavate new nest chambers at locations across the soil profile that offer suitable environmental conditions for brood and fungus rearing. It is an open question whether new chambers are excavated in advance, or will emerge around brood or fungus initially relocated to a suitable site in a previously-excavated tunnel. In the laboratory, we investigated the mechanisms underlying the excavation of new nest chambers in the leaf-cutting ant Acromyrmex lundi. Specifically, we asked whether workers relocate brood and fungus to suitable nest locations, and to what extent the relocated items trigger the excavation of a nest chamber and influence its shape. When brood and fungus were exposed to unfavorable environmental conditions, either low temperatures or low humidity, both were relocated, but ants clearly preferred to relocate the brood first. Workers relocated fungus to places containing brood, demonstrating that subsequent fungus relocation spatially follows the brood deposition. In addition, more ants aggregated at sites containing brood. When presented with a choice between two otherwise identical digging sites, but one containing brood, ants'' excavation activity was higher at this site, and the shape of the excavated cavity was more rounded and chamber-like. The presence of fungus also led to the excavation of rounder shapes, with higher excavation activity at the site that also contained brood. We argue that during colony growth, workers preferentially relocate brood to suitable locations along a tunnel, and that relocated brood spatially guides fungus relocation and leads to increased digging activity around them. We suggest that nest chambers are not excavated in advance, but emerge through a self-organized process resulting from the aggregation of workers and their density-dependent digging behavior around the relocated brood and fungus.  相似文献   

3.
Summary We examined division of labor and colony demography in the antPonera pennsylvannica. Observation of three colonies with individually marked workers revealed a high degree of interindividual behavioral variation and a rough but consistent division of labor between brood tenders and foragers. This division was present both in colonies consisting entirely of workers produced in the previous summer and in colonies containing freshly eclosed ants. Two colonies showed typical age-based polyethism, with young ants focusing on brood care and overwintered ants on foraging. No such age basis was detected in the third colony. This difference may relate to variability in brood production schedules. Colonies showing temporal polyethism had two peaks of brood production and thus had relatively large brood populations when the first young workers eclosed, while the third colony had only one peak and little brood for the young workers to tend. Even if young ants have a lower threshold for brood care, it may have been concealed in the latter situation. Demographic data indicate that natural colonies produce one brood per year and that workers typically eclose into colonies with relatively low brood care demands. This suggests that overwintered workers do most of a colony's work and that the division of labor among overwintered ants is the more important one under natural conditions. The basis of this division is as yet unknown. These results also suggest that small colony size, univoltine brood schedule and a close association between foraging and brood care do not preclude division of labor among specialized castes, as has been suggested for another ponerine species (Traniello 1978).  相似文献   

4.
Recruitment via pheromone trails by ants is arguably one of the best-studied examples of self-organization in animal societies. Yet it is still unclear if and how trail recruitment allows a colony to adapt to changes in its foraging environment. We study foraging decisions by colonies of the ant Pheidole megacephala under dynamic conditions. Our experiments show that P. megacephala, unlike many other mass recruiting species, can make a collective decision for the better of two food sources even when the environment changes dynamically. We developed a stochastic differential equation model that explains our data qualitatively and quantitatively. Analysing this model reveals that both deterministic and stochastic effects (noise) work together to allow colonies to efficiently track changes in the environment. Our study thus suggests that a certain level of noise is not a disturbance in self-organized decision-making but rather serves an important functional role.  相似文献   

5.
Interspecific interactions are often assumed to be mutualistic if one species appears to benefit. However, most studies do not test whether both participants benefit. Myrmecochory, or seed dispersal by ants, is characterized by a lipid-rich appendage, or elaiosome, on a seed. Typically, ants gather the diaspores (i.e., seeds with elaiosomes), carry them to the nest, consume the elaiosome, and discard the seed unharmed either inside the nest or on a refuse pile. The benefit to the ants is presumably the nutritional content of the elaiosome, whereas benefits to the plant include dispersal from the parent plant, protection from predators, reduced seedling competition, protection from fire, or transportation to nutrient-rich microsites. Most studies of myrmecochory focus on potential benefits to the plants and simply assume that ants receive a benefit from consuming elaiosomes. I tested whether Pogonomyrmex californicus benefits from consuming Datura wrightii and D. discolor elaiosomes by raising newly-mated queens (i.e., foundresses) on different diets and measuring their survival and brood production. Foundresses reared solely on D. wrightii or D. discolor had similar probabilities of surviving and producing brood as foundresses fed a standard diet, but the number and developmental stage of the brood produced was severely reduced. Because the initial number of brood produced is critical for successful colony establishment, the future fitness of foundresses consuming only Datura is likely reduced. In addition, adding Datura to a standard diet did not increase queen survival or brood production. Although it is possible that Datura may help sustain a colony through periods of scarcity, P. californicus do not appear to receive nutritional benefits from myrmecochorous interactions with Datura in the northern Sonoran Desert. Received 4 July 2005; revised 17 April 2006; accepted 9 May 2006.  相似文献   

6.
The success of social animals (including ourselves) can be attributed to efficiencies that arise from a division of labour. Many animal societies have a communal nest which certain individuals must leave to perform external tasks, for example foraging or patrolling. Staying at home to care for young or leaving to find food is one of the most fundamental divisions of labour. It is also often a choice between safety and danger. Here we explore the regulation of departures from ant nests. We consider the extreme situation in which no one returns and show experimentally that exiting decisions seem to be governed by fluctuating record signals and ant-ant interactions. A record signal is a new ‘high water mark’ in the history of a system. An ant exiting the nest only when the record signal reaches a level it has never perceived before could be a very effective mechanism to postpone, until the last possible moment, a potentially fatal decision. We also show that record dynamics may be involved in first exits by individually tagged ants even when their nest mates are allowed to re-enter the nest. So record dynamics may play a role in allocating individuals to tasks, both in emergencies and in everyday life. The dynamics of several complex but purely physical systems are also based on record signals but this is the first time they have been experimentally shown in a biological system.  相似文献   

7.
We investigated the effect that different categories of brood had on the production of periodic activity within artificial aggregates of the ant,Leptothorax allardycei. Colonies of this species exhibit periodic patterns of movement activity with a period of approximately 20–30 min. Artificial aggregates of this species show that periodic activity appears gradually as the number of workers in the aggregate increases to 15 workers. In addition, it has been noted that the presence of brood with the workers makes the periodic activity more pronounced. In this paper we investigate the effect that four categories of brood had on the periodic activity of worker ants. Eggs, small larvae, large larvae, and pupae were tested with four different-sized aggregates of workers. We hypothesized that brood care is responsible for the increase in periodic activity and therefore that larvae (which require more tending) would be more effective at increasing periodic activity than eggs or pupae. Contrary to our expectations, eggs and both size categories of larvae were equally effective in enhancing periodicity in our experimental aggregates. Pupae, in contrast, were completely ineffective at enhancing periodic activity. We discuss some possible reasons for the differential effects of eggs, larvae, and pupae on the behavior of worker ants.  相似文献   

8.
Flexibility in task performance is essential for a robust system of division of labour. We investigated what factors determine which social insect workers respond to colony-level changes in task demand. We used radio-frequency identification technology to compare the roles of corpulence, age, spatial location and previous activity (intra-nest/extra-nest) in determining whether worker ants (Temnothorax albipennis) respond to an increase in demand for foraging or brood care. The less corpulent ants took on the extra foraging, irrespective of their age, previous activity or location in the nest, supporting a physiological threshold model. We found no relationship between ants that tended the extra brood and corpulence, age, spatial location or previous activity, but ants that transported the extra brood to the main brood pile were less corpulent and had high previous intra-nest activity. This supports spatial task-encounter and physiological threshold models for brood transport. Our data suggest a flexible task-allocation system allowing the colony to respond rapidly to changing needs, using a simple task-encounter system for generalized tasks, combined with physiologically based response thresholds for more specialized tasks. This could provide a social insect colony with a robust division of labour, flexibly allocating the workforce in response to current needs.  相似文献   

9.
In socially monogamous species with bi-parental care, males suffer reduced reproductive success if their mate engages in extra-pair copulations (EPCs). One might therefore expect that males should refuse to care for a brood if they can detect that an EPC has occurred. Here, we use a game-theory model to study male brood care in the face of EPCs in a cooperatively breeding species in which offspring help to raise their (half-) siblings in their parents' next breeding attempt. We show that under certain conditions males are selected to care even for broods completely unrelated to themselves. This counterintuitive result arises through a form of pseudo-reciprocity, whereby surviving extra-pair offspring, when helping to rear their younger half-siblings, can more than compensate for the cost incurred by the male that raised them. We argue that similar effects may not be limited to cooperative breeders, but may arise in various contexts in which cooperation between (half-) siblings occurs.  相似文献   

10.
Division of labour in Solenopsis invicta follows a familiar pattern: younger, smaller ants tend toward brood care while older, larger ants tend toward foraging. However, long-term observations of marked individuals reveal that length of nursing and foraging ‘careers’ and the age of transition between these activities vary considerably between and within size groups, and are related to length of life. Experiments with entire colonies show that larger ants are more likely than smaller ants to forage for insect prey. There are two main worker castes, ‘nurses’ and ‘foragers’, whose members span a wide age-size range, and a large ‘reserve’ subcaste, heterogeneous in age, size, and behaviour: reserves may nurse, forage, store liquid food, or relay food from nurses to foragers. The proportion of ants engaged in foraging decreases with colony size because many ants in large colonies are not exposed to recruitment signals.  相似文献   

11.
Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.  相似文献   

12.
Fungus-growing ants (Myrmicinae: Attini) live in an obligate symbiotic relationship with a fungus that they rear for food, but they can also use the fungal mycelium to cover their brood. We surveyed colonies from 20 species of fungus-growing ants and show that brood-covering behavior occurs in most species, but to varying degrees, and appears to have evolved shortly after the origin of fungus farming, but was partly or entirely abandoned in some genera. To understand the evolution of the trait we used quantitative phylogenetic analyses to test whether brood-covering behavior covaries among attine ant clades and with two hygienic traits that reduce risk of disease: mycelial brood cover did not correlate with mutualistic bacteria that the ants culture on their cuticles for their antibiotics, but there was a negative relationship between metapleural gland grooming and mycelial cover. A broader comparative survey showed that the pupae of many ant species have protective cocoons but that those in the subfamily Myrmicinae do not. We therefore evaluated the previously proposed hypothesis that mycelial covering of attine ant brood evolved to provide cocoon-like protection for the brood.  相似文献   

13.
Several groups of ants display a reproductive cycle in which two phases of adult activity alternate in synchrony with the brood instars. The brood stimulation hypothesis (Schneirla, 1957) was developed for ecitonine army ants to explain the proximate control of such biphasic cycles. According to it, onsets of cyclic activities are triggered by social stimulations arising from the developing brood, rather than by innate pace-makers inbuilt in adult ants. While it seemed to provide an acceptable explanation, this hypothesis failed to be experimentally demonstrated, in spite of numerous field observations. We used colonies of thelytokous populations of the phasic ant Cerapachys biroi as a model in order to test the brood stimulation theory. Brood removal and substitution experiments allowed us to confirm, first, that the periodicity of the cycle is not controlled by an endogenous rhythm in adults. Moreover, we could also characterise the influence of each brood instar on the activity of adult ants. Although we confirmed the existence of a brood stimulation involved in the control of the cycle, experiments revealed that it was not performed accordingly to Schneirla’s hypothesis. In effect, our study suggests a primacy of larval influence: the foraging phase was triggered and sustained by larvae- induced excitement rather than by stimulation from the newly-emerged callows. Received 21 March 2005; revised 1 June 2005; accepted 6 june 2005.  相似文献   

14.
Summary We studied disturbance patterns in groups of feeding Argentine ants, Linepithema humile. All disturbances were caused by the ants themselves, without application of exogenous disturbances. The overall pattern, which consisted of a power law distribution of disturbance avalanche sizes, each of which was initiated by a single wandering ant, is similar to patterns characteristic of self-organized critical systems. In addition, we observed variation among individuals in response to disturbance according to their level of satiation. Ants with distended gasters (indicative of volume of food uptake) resumed feeding less rapidly than their thinner counterparts, and were more likely to leave food sources altogether. Although these disturbances reduce food collection because feeding ants are interrupted, they are minimal and may enable ant groups to balance collectively the advantage of rapid alarm communication with the costs of interrupted foraging from trivial disturbances.Received 18 September 2003; revised 21 November 2003; accepted 4 December 2003.  相似文献   

15.
Unlike most animals studied so far in which the activity with no circadian rhythms is pathological or linked to deteriorating performance, worker bees and ants naturally care for their sibling brood around the clock with no apparent ill effects. Here, we tested whether bumble-bee queens that care alone for their first batch of offspring are also capable of a similar chronobiological plasticity. We monitored locomotor activity of Bombus terrestris queens at various life cycle stages, and queens for which we manipulated the presence of brood or removed the ovaries. We found that gynes typically emerged from the pupae with no circadian rhythms, but after several days showed robust rhythms that were not affected by mating or diapauses. Colony-founding queens with brood showed attenuated circadian rhythms, irrespective of the presence of ovaries. By contrast, queens that lost their brood switched again to activity with strong circadian rhythms. The discovery that circadian rhythms in bumble-bee queens are regulated by the life cycle and the presence of brood suggests that plasticity in the circadian clock of bees is ancient and related to maternal behaviour or physiology, and is not a derived trait that evolved with the evolution of the worker caste.  相似文献   

16.
Some parasites modify characteristics of intermediate hosts to facilitate their consumption by subsequent hosts, but examples of parasite-mediated mimicry are rare. Here we report dramatic changes in the appearance and behavior of nematode-parasitized ants such that they resemble ripe fruits in the tropical rain forest canopy. Unlike healthy ants, which are completely black, infected ants have bright red, berry-like gasters full of parasite eggs. The infected gasters are held in a conspicuous elevated position as the ants are walking, and they are easily detached from living ants, which also exhibit reduced defensive responses. This combination of changes presumably makes the infected ants attractive to frugivorous birds, which ingest the red gasters and pass the parasite eggs in their feces. The feces are collected by ants and fed to the developing brood, thus completing the cycle. This is the first documentation of parasites causing apparent fruit mimicry in an animal host to complete their life cycle.  相似文献   

17.
1. In incipient termite colonies, biparental brood care rapidly shifts towards alloparental brood care. This transition was suggested to recapitulate the evolutionary trajectory from subsocial wood roach ancestors to eusociality in termites. 2. Incipient colonies of the subterranean termite Coptotermes gestroi (Wasmann) were investigated to determine if this transition was irreversible and if the burden of brood care on the first alloparents could be measured. To do so, the initial size of the work force necessary for an incipient colony to survive once the brood care became alloparental was determined. 3. The results of the study show that within 5 months after foundation, brood care duties were fully transferred to workers and the primary reproductives became irreversibly dependent on these workers for survival, reproduction, and colony growth. 4. Once the brood care became strictly alloparental, the presence of a single worker was enough to maintain the survival of the king and queen, confirming that ‘reversed parental care’ was also achieved. However, major brood loss and suppressed egg‐laying activity from the queen was observed, suggesting that the burden of brood care was too high for a single worker to absorb. Therefore, once brood care has shifted to alloparents, a critical number of workers is necessary to prevent brood loss and initiate colony growth. 5. As the initial cost of brood care is rapidly absorbed with colony growth in termites, the performance in brood care of the first few alloparents in a subsocial wood roach ancestor may have contributed to the emergence of eusociality in this clade.  相似文献   

18.
Cockroaches have always been used to understand the first steps of social evolution in termites because they are close relatives with less complex and integrated social behaviour. Termites are all eusocial and ingroup comparative analysis would be useless to infer the origin of their social behaviour. The cockroach genus Cryptocercus was used as a so-called "prototermite" model because it shows key-attributes similar to the termites (except Termitidae): wood-feeding, intestinal flagellates and subsocial behaviour. In spite of these comparisons between this subsocial cockroach and eusocial termites, the early and remote origin of eusocial behaviour in termites is not well understood yet and the study of other relevant "prototermite" models is however needed. A molecular phylogenetic analysis was carried out to validate a new "prototermite" model, Parasphaeria boleiriana which shows a peculiar combination of these key-attributes. It shows that these attributes of Parasphaeria boleiriana have an independent origin from those of other wood-eating cockroaches and termites. The case of P. boleiriana suggests that a short brood care was selected for with life on an ephemeral wood resource, even with the need for transmission of flagellates. These new phylogenetic insights modify evolutionary hypotheses, contradicting the assumption made with Cryptocercus model that a long brood care is necessary for cooperation between broods in the "shift-in-dependent-care" hypothesis. An ephemeral wood resource is suggested to prompt generation overlap and the evolution of cooperation, even if brood care is shortened.  相似文献   

19.
Individual experience alone can generate lasting division of labor in ants   总被引:3,自引:0,他引:3  
Division of labor, the specialization of workers on different tasks, largely contributes to the ecological success of social insects [1, 2]. Morphological, genotypic, and age variations among workers, as well as their social interactions, all shape division of labor [1-12]. In addition, individual experience has been suggested to influence workers in their decision to execute a task [13-18], but its potential impact on the organization of insect societies has yet to be demonstrated [19, 20]. Here we show that, all else being equal, ant workers engaged in distinct functions in accordance with their previous experience. When individuals were experimentally led to discover prey at each of their foraging attempts, they showed a high propensity for food exploration. Conversely, foraging activity progressively decreased for individuals who always failed in the same situation. One month later, workers that previously found prey kept on exploring for food, whereas those who always failed specialized in brood care. It thus appears that individual experience can strongly channel the behavioral ontogeny of ants to generate a lasting division of labor. This self-organized task-attribution system, based on an individual learning process, is particularly robust and might play an important role in colony efficiency.  相似文献   

20.
We investigated how the type of food (sucrose or protein) and the presence of brood influence foraging decisions of Lasius niger L. scouts. In particular, we studied whether and how these parameters alter the drinking behaviour of scouts and the allocation of workers to food retrieving and recruiting tasks. We analysed drinking and recruiting behaviour of single scouts from nests with or without brood that encountered a proteinaceous or sucrose droplet. A substantial fraction of scouts encountering a proteinaceous droplet did not ingest it and did not then return to the nest whereas nearly all drank at sugar droplets; brood presence did not influence this decision. Once an ant started drinking, it needed to drink a critical volume before returning to the nest; this critical volume did not depend on the type of food and the presence of brood. Scouts laid a trail only if they returned to the colony. Food type and brood presence altered the proportion of individuals that laid a trail but not the individual trail-laying intensity. We discuss the consequences of this decision system through simple individual assessments and decision rules, with regard to the self-organized foraging patterns of this species and the efficient collective exploitation of natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号