首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In growing Escherichia coli cells, the master regulator of the general stress response, sigmaS (RpoS), is subject to rapid proteolysis. In response to stresses such as sudden carbon starvation, osmotic upshift or shift to acidic pH, sigmaS degradation is inhibited, sigmaS accumulates and numerous sigmaS-dependent genes with stress-protective functions are activated. sigmaS proteolysis is dependent on ClpXP protease and the response regulator RssB, whose phosphorylated form binds directly to sigmaS in vitro. Here, we show that substitutions of aspartate 58 (D58) in RssB, which result in higher sigmaS levels in vivo, produce RssB variants unable to bind sigmaS in vitro. Thus, RssB is the direct substrate recognition factor in sigmaS proteolysis, whose affinity for sigmaS depends on phosphorylation of its D58 residue. RssB does not dimerize or oligomerize upon this phosphorylation and sigmaS binding, and RssB and sigmaS exhibit a 1:1 stoichiometry in the complex. The receiver as well as the output domain of RssB are required for sigmaS binding (as shown in vivo and in vitro) and for complementation of an rssB null mutation. Thus, the N-terminal receiver domain plays an active and positive role in RssB function. Finally, we demonstrate that RssB is not co-degraded with sigmaS, i.e. RssB has a catalytic role in the initiation of sigmaS turnover. A model is presented that integrates the details of RssB-sigmaS interaction, the RssB catalytic cycle and potential stress signal input in the control of sigmaS proteolysis.  相似文献   

2.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   

3.
4.
5.
6.
7.
To determine whether the stationary sigma factor, σS, influences polyhydroxyalkanoate metabolism in Pseudomonas putida KT2440, an rpoS -negative mutant was constructed to evaluate polyhydroxyalkanoate accumulation and expression of a translational fusion to the promoter region of the genes that code for polyhydroxyalkanoate synthase 1 ( phaC1 ) and polyhydroxyalkanoate depolymerase ( phaZ ). By comparison with the wild-type, the rpoS mutant showed a higher polyhydroxyalkanoate degradation rate and increased expression of the translational fusion during the stationary growth phase. These results suggest that σS might control the genes involved in polyhydroxyalkanoate metabolism, possibly in an indirect manner. In addition, survival and oxidative stress assays performed under polyhydroxyalkanoate- and nonpolyhydroxyalkanoate- accumulating conditions demonstrated that the accumulated polyhydroxyalkanoate increased the survival and stress tolerance of the rpoS mutant. According to this, polyhydroxyalkanoate accumulation would help cells to overcome the adverse conditions encountered during the stationary phase in the strain that lacks RpoS.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
DegS (HhoB), a putative serine protease related to DegP/HtrA, regulates the basal and induced activity of the essential Escherichia coli sigma factor sigma (E), which is involved in the cellular response to extracytoplasmic stress. DegS promotes the destabilization of the sigma (E)-specific anti-sigma factor RseA, thereby releasing sigma (E) to direct gene expression. We demonstrate that degS is an essential E. coli gene and show that the essential function of DegS is to provide the cell with sigma (E) activity. We also show that the putative active site of DegS is periplasmic and that DegS requires its N-terminal transmembrane domain for its sigma (E)-related function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号