首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila Kc cells are ecdysone-responsive: hormone treatment leads rapidly to increased synthesis of several ecdysone-inducible polypeptides (EIPs) and to commitment to eventual proliferative arrest. Later, the treated cells undergo morphological transformation, cease to proliferate, and develop new enzymatic activities, notably, acetylcholinesterase (AChE) activity. These responses have proven useful as models for studying ecdysone action. Here we report the sensitivity of Kc cells to another important insect developmental regulator--juvenile hormone (JH). We find that JH inhibits some, but not all, aspects of the ecdysone response. When Kc cells are treated with ecdysone in the presence of either natural JHs or synthetic analogues, the morphological and proliferative responses are inhibited and AChE induction is blocked. Most striking is that JHs protect the cells from the rapid proliferative commitment induced by ecdysone alone. The JH effects exhibit reasonable dose-response curves with half-maximal responses occurring at very low JH concentrations. Nonetheless, even at high JH concentrations the inhibitory effects are incomplete. It is interesting that EIP induction appears to be refractory to JH. It seems clear that JH is not simply a generalized inhibitor of ecdysone-induced responses.  相似文献   

2.
Ecdysteroids and juvenile hormones (JH) regulate a variety of developmental, physiological, behavioral, and metabolic processes. Ecdysteroids function through a heterodimeric complex of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle (USP). An 85 kDa protein identified in Drosophila melanogaster methoprene-tolerant (Met) mutant binds to JH III with high affinity, and the mutant flies are resistant to juvenile hormone analog (JHA), methoprene. Reporter assays using the yeast two-hybrid system were performed in order to study the molecular interactions between EcR, USP and Met. As expected, EcR fused to the B42 activation domain and USP fused to the LexA DNA binding domain interacted with each other and supported induction of the reporter gene in the presence of stable ecdysteroid analog, RG-102240 or steroids, muristerone A and ponasterone A. The USP:USP homodimers supported expression of the reporter gene in the absence of ligand, and there was no significant increase in the reporter activity after addition of a JHA, methoprene. Similarly, Met:Met homodimers as well as Met:EcR and Met:USP heterodimers induced reporter activity in the absence of ligand and addition of ecdysteroid or JH analogs did not increase the reporter activity regulated by either homodimers or heterodimers of Met protein. Two-hybrid assays in insect cells and in vitro pull-down assays confirmed the interaction of Met with EcR and USP. These data suggest that the proteins that are involved in signal transduction of ecdysteroids (EcR and USP) and juvenile hormones (Met) interact to mediate cross-talk between these two important hormones. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

3.
The effects of increased levels of dopamine (feeding flies with dopamine precursor, l-dihydroxyphenylalanine) and octopamine (feeding flies with octopamine) on ecdysone 20-monooxygenase activity in young (2 days old) wild type females (the strain wt) of Drosophila virilis have been studied. l-dihydroxyphenylalanine and octopamine feeding increases ecdysone 20-monooxygenase activity by a factor of 1.6 and 1.7, respectively. Ecdysone 20-monooxygenase activity in the young (1 day old) octopamineless females of the strain Tβh nM18 , in females of the strain P845 (precursor of Tβh nM18 strain) and in wild type females (Canton S) of Drosophila melanogaster have been measured. The absence of octopamine leads to a considerable decrease in the enzyme activity. We have also studied the effects of juvenile hormone application on ecdysone 20-monooxygenase activity in 2-day-old wt females of D. virilis and demonstrated that an increase in juvenile hormone titre leads to an increase in the enzyme activity. We discuss the supposition that ecdysone 20-monooxygenase occupies a key position in the regulation of 20-hydroxyecdysone titre under the conditions that lead to changes in juvenile hormone titre and biogenic amine levels.  相似文献   

4.
5.
The effect of 20-hydroxyecdysone (20E) and juvenile hormone (JH) on the glutathione pathway of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) was determined by investigating glutathione peroxidase (GSH-Px), glutathione S-transferases (GST), and glutathione reductase (GR) activities as well as reduced and oxidized glutathione (GSH and GSSG) content with respect to developmental stage. The continuous decreases of GSH-Px and GST activities dependent on the growth period of G. mellonella occurred in JH and 20E groups over and under their controls, respectively. While the GR activities of G. mellonella showed increases in young pupa (YP) for both control and in old larvae (OL) for the 20E groups after the minimum at these periods, they also increased after old pupa (OP) for the JH group with a maximum in OL period. Although GR activity levels in the JH group were significantly higher compared with controls and 20E groups up to OP period, the activity levels for the control and 20E groups were higher than those of the JH group at adult (AD) and old pupa (OP) periods, respectively. In spite of increases in the GR activity of 20E and control groups of G. mellonella, decreased GSH and increased GSSG levels were observed at aging period. GSH levels in the JH group reached a maximum at prepupa (PP) and then decreased with non-significant changes from OL to AD period. According to the results, GSH and GSSG levels, as well as GSH/GSSG ratios, were below and over control levels in 20E and JH groups, respectively, during all of the investigated developmental stages. On the contrary, the LPO levels were higher than the control for 20E and lower for the JH groups during the developmental period. These results show that while ecdysone hormone has a negative effect on the glutathione-related detoxication capacity of G. mellonella, the juvenile hormone has a positive effect on this process.  相似文献   

6.
The acquisition of competence is a key mechanism for refining global signals to distinct spatial and temporal responses. The molecular basis of competence, however, remains poorly understood. Here, we show that the beta FTZ-F1 orphan nuclear receptor functions as a competence factor for stage-specific responses to the steroid hormone ecdysone during Drosophila metamorphosis. beta FTZ-F1 mutants pupariate normally in response to the late larval pulse of ecdysone but display defects in stage-specific responses to the subsequent ecdysone pulse in prepupae. The ecdysone-triggered genetic hierarchy that directs these developmental responses is severely attenuated in beta FTZ-F1 mutants, although ecdysone receptor expression is unaffected. This study define beta FTZ-F1 as an essential competence factor for stage-specific responses to a steroid signal and implicates interplay among nuclear receptors as a mechanism for achieving hormonal competence.  相似文献   

7.
Studies of Drosophila metamorphosis have been hampered by our inability to visualize many of the remarkable changes that occur within the puparium. To circumvent this problem, we have expressed GFP in specific tissues of living prepupae and pupae and compiled images of these animals into time-lapse movies. These studies reveal, for the first time, the dynamics and coordination of morphogenetic movements that could only be inferred from earlier studies of dissected staged animals. We also identify responses that have not been described previously. These include an unexpected variation in some wild-type animals, where one of the first pairs of legs elongates in the wrong position relative to the second pair of legs and then relocates to its appropriate location. At later stages, the antennal imaginal discs migrate from a lateral position in the head to their final location at the anterior end, as leg and mouth structures are refined and the wings begin to fold. The larval salivary glands translocate toward the dorsal aspect of the animal and undergo massive cell death following head eversion, in synchrony with death of the abdominal muscles. These death responses fail to occur in rbp(5) mutants of the Broad-Complex (BR-C), and imaginal disc elongation and eversion is abolished in br(5) mutants of the BR-C. Leg malformations associated with the crol(3) mutation can be seen to arise from defects in imaginal disc morphogenesis during prepupal stages. This approach provides a new tool for characterizing the dynamic morphological changes that occur during metamorphosis in both wild-type and mutant animals.  相似文献   

8.
The morphogenetic effects of t,t-farnesol, Law-Williams juvenile hormone analogue, dichlorofarnesenic acid ethyl ester (DFAEE), and a syntetic racemic or isomeric mixture of C18 juvenile hormone (JH), when applied topically to pharate pupae and adults of D. melanogaster have been studied. Of these various agents tested, only DFAEE and JH affected adult development and eclosion and the pharate pupae were the most sensitive to these agents. The racemic mixture of JH induced the secretion, in the abdomen, of a supernumerary cuticle indistinguishable from that of the pupa; it, in addition, retarded the synthesis of brown eye pigments, general body pigmentation, and affected the differentiation of various internal organs and cuticular structures of the abdomen. By comparing the effects of JH with those of Minute (M) and bobbed (bb) mutations on the adult development, it is suggested that JH, by retarding genetic translation mimics M or bb.  相似文献   

9.
10.
Pupae of Hyalophora cecropia were injected with various doses of beta-ecdysone (molting hormone) or juvenile hormone and the epidermal cell ultrastructure was then studied with the electron microscope. The hormonal effects were rapidly manifested and appeared to be cell specific and dose dependent. The initial response to both hormones was an outward blebbing of the apical plasma membrane. Large doses of beta-ecdysone elicited both precocious cuticle deposition and premature autophagic vacuole formation. Juvenile hormone prevented the appearance of the autophagic vacuoles which normally preceded cell differentation into cells capable of adult synthesis. After prolonged exposure to juvenile hormone, there appeared to be an exaggerated separation of the epidermal cells at the basal region suggesting that the juvenile hormone may act at the membrane level.  相似文献   

11.
12.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   

13.
ABSTRACT. Ecdysone stimulates the synthesis of vitellogenin in the fat body of mature female mosquitoes. Preparations from newly emerged animals, however, were found to be unresponsive to ecdysone. Responsiveness developed to a maximal level during a 36-h post-emergence period of maturation. This maturation could be accelerated with juvenile hormone application, prevented by allatectomy, and restored by corpora allata implants. It is concluded that the development of fat body responsiveness to ecdysone is dependent upon previous post-emergence exposure to juvenile hormone.  相似文献   

14.
15.
16.
17.
Escherichia coli vectors were constructed for the production of a protein complex that mimics the native ecdysone receptor (EcR) isolated from Drosophila. The two steroid receptors, ultraspiracle (USP) and EcR, were expressed as truncations, retaining primarily the hormone binding domains. The recombinant receptor complex was able to mimic the pharmacology of the native receptor with respect to both synthetic and natural agonists. USP and EcR fusion proteins could be expressed in separate cell lines and then recombined following isolation to yield a ligand binding preparation with a dissociation constant (K(D)) for Ponasterone A of 1.5 nM and a total yield of 1.9 pmol ligand binding sites/mg protein. Alternatively, the simultaneous coexpression of both receptors increased yields by several orders of magnitude to 6 nmol ligand binding sites/mg protein with a K(D) of 0.6 nM. Chromatographic analysis under native conditions showed that EcR, when expressed alone, migrated as a variety of complexes, mostly coming out in the void volume as denatured, insoluble, aggregate. In contrast, purified extracts of coexpressed EcR and USP eluted as a single peak with a mobility indicating a heterodimer. The majority of the coexpressed fusion receptors, following purification, formed functional steroid binding sites. A detailed scheme is provided for the expression and isolation of milligram quantities of highly purified receptor dimer.  相似文献   

18.
Methoprene, a chemical analog of juvenile hormone, is toxic when applied to late third-instar larvae of Drosophila melanogaster. Using an ethyl methane sulfonate mutagenesis screen, we have selected two noncomplementing mutants, one of which is nearly 100 times more resistant than wild-type to either methoprene or juvenile hormone III topically applied or incorporated into the diet. The mutation, named methoprene-tolerant (Met), also confers resistance to methoprene-induced pseudotumor formation in larvae as well as to juvenile hormone III- or methoprene-induced vitellogenic oocyte development in adult females. Met adults show little or no cross-resistance to four other insecticides. The mutation was mapped by recombination to a location 35.4 on the X-chromosome and uncovered by chromosomes deficient for the region 10C2-10D4. Complementation was observed between Met and a lethal allele of the RNA polymerase II locus, which is also found in this region. Since the Met mutation also confers resistance to methoprene-induced abnormalities in adult cuticle formation, the autonomy of Met expression could be evaluated in flies mosiac for this mutation. Autonomous expression of Met was found both in abdominal cuticle as well as in external male genitalia. The characteristics of Met are consistent with those expected of a mutant having altered juvenile hormone reception in target tissue.  相似文献   

19.
20.
Ishimoto H  Kitamoto T 《Fly》2011,5(3):215-220
The molting hormone 20-hydroxyecdysone (20E) is an active metabolite of ecdysone and plays vital roles during ontogeny of the fruit fly Drosophila, coordinating critical developmental transitions such as molting and metamorphosis. Although 20E is known to exist throughout life in both male and female flies, its functions in adult physiology and behavior remain largely elusive. Notably, findings from previous studies suggest that this hormone may be involved in adult stress responses. Consistent with this possibility, we have found that ecdysone signaling in adult flies is activated by "stressful" social interactions and plays a role in the formation of long-term courtship memory [Ishimoto et al. (2009). Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. PNAS 106, 6381-6386]. In addition, we recently reported that ecdysone signaling contributes to the regulation of sleep, affecting transitions between sleep and wakefulness [Ishimoto and Kitamoto. (2010). The steroid molting hormone ecdysone regulates sleep in adult Drosophila melanogaster. Genetics 185, 269-281]. Here in Extra Views, we first summarize our findings on the unconventional roles of 20E in regulating memory and sleep in adult flies. We then discuss speculative ideas concerning the stress hormone-like features of 20E, as well as the possibility that ecdysone signaling contributes to remodeling of the adult nervous system, at both the functional and structural levels, through epigenetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号