首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When Friend erythroleukemia cells (FEC) are incubated at 43 degrees C there is a rapid and nearly complete inhibition of protein synthesis which can be reversed when cells are returned to their normal growing temperature of 37 degrees C. Examination of the recovery of FEC from heat shock indicates that most cellular mRNAs behave as a cohort and return to translation at approximately the same rate. We found a notable exception to this rule in the case of a 78 kDa basic protein (named protein A) whose rate of return to a normal synthetic rate is markedly inhibited subsequent to heat shock. We show that protein A corresponds to the 78 kDa polypeptide commonly found to be associated with the poly(A) tails of mammalian mRNA.  相似文献   

2.
R Petersen  S Lindquist 《Gene》1988,72(1-2):161-168
When heat-shocked Drosophila cells are returned to normal temperatures, heat-shock protein (HSP) synthesis is repressed and normal protein synthesis is restored. The repression of HSP70 synthesis is accompanied by the selective degradation of its mRNA. We have engineered cells to produce a modified hsp70 mRNA that behaves exactly as the wild-type message. That is, it is stable during heat shock but degraded during recovery when protein synthesis returns to normal. When this message, placed under the control of the metallothionein promoter, is induced at normal temperatures it is rapidly degraded, with a half life of 15-30 min. Apparently, the hsp70 message is inherently unstable. During heat-shock, degradation of the message is suspended; during recovery degradation is restored.  相似文献   

3.
In HEp-2 cells treated with 0.2 or 2.0 μM cytochalasin D (CD), the relative rate of actin synthesis increased for about 12 h and then reached a plateau; this increase was suppressed by actinomycin D (AD). When CD was washed from cells which had been treated for 20 h, the elevated rate of actin synthesis declined to the control value within ca 4 h, as the actin-containing cytoskeletal components rearranged by CD recovered their normal morphology. Subsequently, actin synthesis was depressed below control values for a prolonged period; during recovery from 2 h treatment with CD, this depression was of much shorter duration. Re-addition of CD to cells after a 3 h recovery period again induced the cytoskeletal alterations characteristic of CD treatment but did not reverse the prior decline in the rate of actin synthesis. In HEp-2 cells treated with cycloheximide during exposure to CD for 20 h, the relative rate of actin synthesis measured after removal of cycloheximide was twofold higher than with CD alone and such cells exhibited a twofold slower decline in the rate of actin synthesis during recovery from CD in the continued presence of cycloheximide. These effects of cycloheximide, which resemble observations on “super-induction”, suggest that actin synthesis in CD-treated and recovering HEp-2 cells may be regulated by a repressor protein. The possibility that the proposed repressor protein is actin and that actin may thus be a feedback inhibitor of its own synthesis is discussed.  相似文献   

4.
DNA synthesis inhibition and recovery in L1210 and S-180 ascites tumors following 1-beta-D-arabinofuranosylcytosine (Ara-C) and hydroxyurea (HU) were measured autoradiographically as a basis for optimizing drug schedules. Tumor bearing mice, 10(6) cells day 0, were treated on day 4 with 20, 200 or 2000 mg/kg Ara-C or 50, 300 or 1800 mg/kg HU. At various intervals following drug, [3H]thymidine was administered i.p. and mice were killed 1 hr later. Tumor cells were analyzed for labeling index (LI) and grain count (GC) to determine the percentage of cells in S phase and the distribution of DNA synthesis rates among the labeled cells, respectively. Following each dose of HU, DNA synthesis was inhibited completely. Recovery of LI was rapid and approached control values by 6 hr. Following each dose of Ara-C, DNA synthesis was inhibited completely for at least 6 hr. Recovery of LI was first noted 6 hr following 20 mg/kg Ara-C and 9 hr following 200 mg/kg. Following both doses the LI reached 100% of the control value by 26 hr. GC analysis indicated that following Ara-C treatment, DNA synthesis was reinitiated first with cells with low GC from 6 to 12 hr followed by cells with increasing GC from 12 to 20 hr. The labeling intensity reached control values by 20 hr and an 'overshoot' occurred by 26 hr. These data suggest that the recovery of DNA synthesis rate is a gradual process. Survival data for mice receiving two doses of Ara-C indicated that the optimal interval for retreatment following the lower dose of Ara-C occurred by 6 hr as compared to 12--16 hr for the higher dose. These times coincided in both instances with recovery of LI to 33--50% of control values. Early recovery of LI may be the best method currently available for estimating the optimal time for retreatment with an S phase specific drug.  相似文献   

5.
6.
7.
Heat shock at 45 degrees C virtually abolishes protein synthesis in HeLa cells, but return to 37 degrees C effects a complete recovery and the concomitant synthesis of heat shock-induced proteins. Heat shock induces polysome disaggregation, indicating initiation is principally inhibited. In vitro assays for initiation factor activities reveal heat shock inhibits eukaryotic initiation factor 2 (eIF-2), eIF-(3 + 4F), and eIF-4B. Immunoblot analyses show that eIF-2 alpha and eIF-2 beta become modified during heat shock, and eIF-4B variants disappear. Upon return to 37 degrees C, these alterations reverse. The modifications of eIF-2 alpha and eIF-4B are due to phosphorylation and dephosphorylation, respectively. Enzymatic activities induced by heat shock inhibit protein synthesis and modify initiation factors in a rabbit reticulocyte lysate. Initiation factor modifications may contribute to, or cause, protein synthesis inhibition.  相似文献   

8.
At the heat shock temperature of 45 degrees C, there is a transient induction of the synthesis of heat shock proteins and repression of normal protein synthesis in cells of Neurospora crassa. Both conidiospores and mycelial cells resume normal protein synthesis after 60 min at high temperature. At the RNA level, however, these two developmental stages responded with different kinetics to elevated temperature. Heat shock RNAs (for hsp30 and hsp83) accumulated and declined more rapidly in spores than in mycelia, and during recovery spores accumulated mRNA that encoded a normal protein (the proteolipid subunit of the mitochondrial ATPase), whereas mycelia showed no increase in this normal RNA (for at least 120 min). Therefore, the resumption of normal protein synthesis in spores may depend upon accumulation of new mRNAs. In contrast, mycelial cells appeared to change their translational preference during continued incubation at elevated temperature, from a discrimination against normal mRNAs to a resumption of their translation into normal cellular proteins, exemplified by the ATPase proteolipid subunit whose synthesis was measured in the heat-shocked cells.  相似文献   

9.
Recent data indicate that cells may acquire thermotolerance via more than one route. In this study, we observed differences in thermotolerance development in HeLa S3 cells induced by prior heating (15 minutes at 44 degrees C) or pretreatment with sodium-arsenite (1 hour at 37 degrees C, 100 microM). Inhibition of overall protein and heat shock protein (HSP) synthesis (greater than 95%) by cycloheximide (25 micrograms/ml) during tolerance development nearly completely abolished thermotolerance induced by arsenite, while significant levels of heat-induced thermotolerance were still apparent. The same dependence of protein synthesis was found for resistance against sodium-arsenite toxicity. Toxic heat, but not toxic arsenite treatments caused heat damage in the cell nucleus, measured as an increase in the protein mass of nuclei isolated from treated cells (intranuclear protein aggregation). Recovery from this intranuclear protein aggregation was observed during post-heat incubations of the cells at 37 degrees C. The rate of recovery was faster in heat-induced tolerant cells than in nontolerant cells. Arsenite-induced tolerant cells did not show an enhanced rate of recovery from the heat-induced intranuclear protein aggregation. In parallel, hyperthermic inhibition of RNA synthesis was the same in tolerant and nontolerant cells, whereas post-heat recovery was enhanced in heat-induced, but not arsenite-induced thermotolerant cells. The more rapid recovery from heat damage in the nucleus (protein aggregation and RNA synthesis) in cells made tolerant by a prior heat treatment seemed related to the ability of heat (but not arsenite) to induce HSP translocations to the nucleus.  相似文献   

10.
Exposure of chick myotube cultures to a temperature (45 degrees C) higher than their normal growing temperature (37 degrees C) caused extensive synthesis of three major polypeptides of Mr = 25 000, 65 000 and 81 000 referred to as 'heat-shock polypeptides' (hsps). When these cells were allowed to recover from heat-shock treatment at 37 degrees C for 6-8 h, the rate of accumulation of isotope into the 65 000-Mr and 81 000-Mr hsps declined to levels comparable to those in control cultures maintained at 37 degrees C. However, incorporation of isotope in the 25 000-Mr hsp continued at an elevated rate for a longer period than the 65 000-Mr and 81 000-Mr hsps. When heat-shocked cells were allowed to recover at 37 degrees C in the presence of actinomycin D to block new mRNA synthesis, the hsp synthesis as measured by the incorporation of radioactive isotope in these polypeptides continued at levels comparable to those in heat-shocked cells prior to recovery. The block of recovery by actinomycin D was due to the presence of a greater amount of functional hsp mRNAs in the polysomes as compared to untreated controls. The role of competition between the mRNAs for hsps and normal cellular proteins for the translation machinery in regulating protein synthesis during the recovery from heat shock has been discussed.  相似文献   

11.
12.
In Drosophila tissue culture cells, the synthesis of ribosomal proteins was inhibited by a 1-h 37 degrees C heat shock. Ribosomal protein synthesis was repressed to a greater extent than that of most other proteins synthesized by these cells at 25 degrees C. After a 1-h heat shock, when the cells were returned to 25 degrees C, the ribosomal proteins were much slower than most other 25 degrees C proteins to return to pre-heat shock levels of synthesis. Relative to one another, all the ribosomal proteins were inhibited and later recovered to normal levels of synthesis at the same rate and to the same extent. Unlike the ribosomal proteins, the precursor to the large rRNAs was continually synthesized during heat shock, although at a slightly reduced level, but was not processed. It was rapidly degraded, with a half-life of approximately 16 min. Pre-heat shock levels of synthesis, stability, and correct processing were restored only when ribosomal protein synthesis returned to at least 50% of that seen in non-heat-shocked cells.  相似文献   

13.
The effects of elevated temperatures upon protein biosynthesis were determined in L5178Y murine leukemic lymphoblasts. The rate of protein synthesis was inhibited proportionately to the increase in temperature. Efforts were made to determine the mechanism of heat inactivation of protein synthesis by studying the requirements for recovery of activity after the cells were returned to 37°C. The ability of actinomycin to block the recovery process suggests that elevated temperatures destroy or inactivate a species of RNA required for protein synthesis. Loss of RNA during heating of the cells is apparently at least partially dependent on protein synthesis, since the presence of cycloheximide during heat shock, is capable of ameliorating the effects of short duration heat treatment.  相似文献   

14.
Bacteria that accumulate RNA in the course of inhibition of protein synthesis are impaired in their ability to synthesize beta-galactosidase during subsequent recovery. By contrast, constitutive enzyme synthesis in recovering cells is normal. Even though no beta-galactosidase is made during recovery from this inhibition, a substantial quantity of beta-galactosidase mRNA (as determined by DNA-RNA hybridization) is made. The beta-galactosidase mRNA made in vivo is functional in vitro. It is capable of directing the in vitro synthesis of a portion of the NH2-terminal beta-galactosidase molecule (in the alpha portion of the molecule). However, this protein is not made in vitro. It is concluded that the beta-galactosidase mRNA that is made during recovery from protein synthesis inhibition, although apparently at least partly normally transcribed in vivo and functional in vitro cannot be translated under these conditions in vivo.  相似文献   

15.
Control of Lysis of T4-infected Escherichia coli   总被引:2,自引:1,他引:1       下载免费PDF全文
The lysis of Escherichia coli B/5 infected with T4Dr48 could be delayed by addition of 9-aminoacridine (9AA). Infected cells showed an early period of maximal response followed by a decline in sensitivity. The ultimate rate of lysis was also affected by the dye. Deoxyribonucleic acid (DNA), protein, and lysozyme synthesis began at the normal time in complexes inhibited by 9AA addition. The rates of synthesis of these macromolecules were lower in the presence of the dye, with DNA and lysozyme synthesis being more strongly affected than total protein synthesis. Penicillin-sensitive cell wall synthesis stopped at about 10 min after infection. Inhibition of oxidative metabolism by early potassium cyanide addition prevented lysis in the presence of intracellular lysozyme. The cyanide-sensitive event occurred at about 20 min in normal infections, and between 30 and 40 min in 9AA-inhibited infections. 9AA could alter both the time at which the cyanide-sensitive event occurred and the time of lysis. Addition of chloramphenicol did not prevent lysis once intracellular lysozyme was present. Lysis from without of infected cells consisted of three phases: an initial sensitivity, followed by a short period of resistance, and then a return to sensitivity in normal infections. The demonstration of the late return to sensitivity depended on the presence of intracellular lysozyme, and could be delayed by 9AA addition.  相似文献   

16.
The role of protein synthesis in onion root tips during mitosis has been studied, by using synchronous cell populations. Incubation in cycloheximide (CHM) or anisomycin during early or middle prophase induces the return of these cells to interphase. Therefore, it is suggested that essential proteins are synthesized, which determine the continuation of the cells in mitosis. In late prophase these treatments caused a certain delay in the entry into further stages, suggesting that a protein synthesis probably occurs which determines the duration of the transition from metaphase to anaphase. Mitotic processes which develop after metaphase do not seem morphologically dependent on protein synthesis, in spite of the fact that one of them, the nucleolar reconstruction, is markedly dependent on RNA synthesis. Unexpectedly this reorganization increases its rate in the absence of protein synthesis.  相似文献   

17.
PROTEIN SYNTHESIS AND RNA SYNTHESIS DURING MITOSIS IN ANIMAL CELLS   总被引:7,自引:5,他引:2       下载免费PDF全文
Protein synthesis and RNA synthesis during mitosis were studied by autoradiography on mammalian tissue culture cells. Protein synthesis was followed by incubating hamster epithelial and human amnion cells for 10 or 15 minutes with phenylalanine-C14. To study RNA synthesis the hamster cells were incubated for 10 minutes with uridine-C14. Comparisons of the synthetic capacity of the interphase and mitotic cells were then made using whole cell grain counts. The rate of RNA synthesis decreased during prophase and reached a low of 13 to 16 per cent of the average interphase rate during metaphase-anaphase. Protein synthesis in the hamster cells showed a 42 per cent increase during prophase with a subsequent return to the average interphase value during metaphase-anaphase. The human amnion cells showed no significant change at prophase but there was a 52 to 56 per cent drop in phenylalanine incorporation at metaphase-anaphase as compared to the average interphase rate. Colcemide was used on the hamster cells to study the effect of a prolonged mitotic condition on protein and RNA synthesis. Under this condition, uridine incorporation was extremely low whereas phenylalanine incorporation was still relatively high. The drastic reduction of RNA synthesis observed under mitotic conditions is believed to be due to the coiled condition of the chromosomes. The lack of a comparable reduction in protein synthesis during mitosis is interpreted as evidence for the presence in these cells of a relatively stable messenger RNA.  相似文献   

18.
The histidine analogue L-histidinol, reported by Vaughan and Hansen (1973) to establish a potent, readily reversible inhibition of eukaryotic protein synthesis in vivo, was used to investigate the regulation of macromolecular synthesis in reovirus-infected L-929 cells. The addition of L-histidinol to normal L cells led to a total inhibition of protein synthesis. The inhibition appeared to be a consequence neither of isotope dilution resulting from elevated endogenous amino acids nor of an inability of treated cells to accumulate exogenous amino acids. Addition of L-histidine to histidinol-arrested cells resulted in a complete recovery of protein synthesis. Similarly, protein synthesis in reovirus-infected L cells examined 17 h postinfection (31 C) was totally inhibited by histidinol treatment and was readily reversed by the addition of histidine. Reovirus-infected cells treated with histidinol had an essentially unaltered capacity to synthesize reovirus single-stranded RNA relative to unperturbed cultures but a diminishing ability to maintain genome RNA synthesis. Addition of L-histidine to arrested cultures led to a complete recovery of genome RNA synthesis. The L-histidinol-mediated arrest of protein synthesis was both very effective and easily reversed, suggesting the general applicability of this novel inhibitor to investigations of regulation of macromolecular synthesis in both normal and virus-infected eukaryotic cells.  相似文献   

19.
The replication of simian virus 40 (SV40) deoxyribonucleic acid (DNA) was inhibited by 99% 2 hr after the addition of cycloheximide to SV40-infected primary African green monkey kidney cells. The levels of 25S (replicating) and 21S (mature) SV40 DNA synthesized after cycloheximide treatment were always lower than those observed in an infected untreated control culture. This is consistent with a requirement for a protein(s) or for protein synthesis at the initiation step in SV40 DNA replication. The relative proportion of 25S DNA as compared with 21S viral DNA increased with increasing time after cycloheximide treatment. Removal of cycloheximide from inhibited cultures allowed the recovery of viral DNA synthesis to normal levels within 3 hr. During the recovery period, the ratio of 25S DNA to 21S DNA was 10 times higher than that observed after a 30-min pulse with (3)H-thymidine with an infected untreated control culture. The accumulation of 25S replicating SV40 DNA during cycloheximide inhibition or shortly after its removal is interpreted to mean that a protein(s) or protein synthesis is required to convert the 25S replicating DNA to 21S mature viral DNA. Further evidence of a requirement for protein synthesis in the 25S to 21S conversion was obtained by comparing the rate of this conversion in growing and resting cells. The conversion of 25S DNA to 21S DNA took place at a faster rate in infected growing cells than in infected confluent monolayer cultures. A temperature-sensitive SV40 coat protein mutation (large-plaque SV40) had no effect on the replication of SV40 DNA at the nonpermissive temperature.  相似文献   

20.
Because marine bivalves are osmoconformers, their cells may be exposed to widely fluctuating osmolality in some habitats. In vitro studies were conducted to evaluate the effect of changes in salinity on protein synthesis of oyster hemocytes. Increasing salinity from a control value of 20–25 ppt to 32–98 ppt decreased the rate of incorporation of amino acid into protein, but did not qualitatively alter the pattern of protein synthesis. On the other hand, decreasing salinity to 3.5–4 ppt not only decreased the rate of protein synthesis, but also altered the types of protein produced. At least a third of the cells remained viable at low salinity and resumed the control pattern of protein synthesis within hours after return to the normal medium. The response to hypoosmotic shock was different from the response to a hyperthermic shock, each stressor inducing expression of a characteristic set of proteins. Preferential synthesis of these proteins may represent an adaptation to preserve or restore oyster cell functions under adverse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号