首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test.  相似文献   

2.
The enzyme systems in rat liver and lung responsible for the oxidative metabolism of hydrazine derivatives were studied to determine whether these enzymes, cytochrome P-450 and monoamine oxidase, were responsible for metabolically activating hydrazines to carcinogenic/toxic metabolites. Cytochrome P-450 preferentially oxidized the nitrogen to nitrogen bond of 1,2-disubstituted hydrazines and hydrazides, while monoamine oxidase oxidized the nitrogen to nitrogen bond of all the classes of hydrazine derivatives that were tested. Oxidation of the nitrogen to nitrogen bond led to the formation of stable azo intermediates in the case of 1,2-disubstituted hydrazines and to unstable monoazo (diazene) metabolites in the case of monosubstituted hydrazines and hydrazides. In addition, cytochrome P-450 preferentially oxidized the carbon to nitrogen bond of monoalkylhydrazines; this reaction resulted in the formation of aldehyde metabolites (via hydrazone intermediates). Monosubstituted hydrazines were shown to be potent, irreversible inhibitors of mitochondrial monoamine oxidase. In contrast, the 1,2-disubstituted hydrazines appeared to be good substrates for the monoamine oxidase and served as competitive inhibitors at high concentrations. There did not appear to be any monoamine oxidase isozyme (form A or B) specificity in the metabolism of either the 1,2-disubstituted hydrazines or the monoalkylhydrazines, ethyl- and n-propylhydrazine.  相似文献   

3.
Glyceryl trinitrate was denitrated by rat liver microsomes in the presence of NADPH with formation of a mixture of glyceryl dinitrates and glyceryl mononitrates. The highest activity was obtained under anaerobic conditions and the reaction was inhibited by O2 indicating that it is a reductive denitration. It was also inhibited by CO, metyrapone and miconazole showing that it was catalyzed by cytochrome P-450. Finally the formation of the cytochrome P-450-Fe(II)-NO complex during this reaction was shown by visible spectroscopy. These data demonstrate that microsomal reductive denitration of glyceryl trinitrate is catalyzed by cytochrome P-450 and can be involved in the formation of the endothelium-derived relaxing factor (EDRF = nitric oxide).  相似文献   

4.
Among the tissues of the male rat studied, the largest quantities of the neutral polar metabolites of aldosterone were synthesized by the hepatic microsomal fraction. The polar metabolites of aldosterone were separated by HPLC into six peaks. Three peaks of non-polar (reduced) metabolites were also synthesized. Synthesis of at least four of the neutral polar metabolites was induced by phenobarbital and inhibited by both CO and SKF-525A. The rates of synthesis of these metabolites, which were linear up to 5 minutes, correlated well with the concentration of cytochrome P-450 in the liver microsomes. Addition of aldosterone to the microsomal fraction caused a pronounced type 1 change in the cytochrome P-450 spectrum. The half maximal spectral change (Ks) for aldosterone was calculated to be 8 μM. These experiments indicate that the neutral polar metabolites of aldosterone are produced by cytochrome P-450 dependent hydroxy lations.  相似文献   

5.
C Chen  M Tu 《The Biochemical journal》1976,160(3):805-808
9,10-Dimethyl-1,2-benzanthracene is oxygenated by rat liver microsomal cytochrome P-450 oxygenase to its 9,10-epidioxide. This transannular 1,4-peroxide is converted further into the diol by the microsomal preparation and NADPH. These two products constitute the majority of the metabolites found under the conditions described.  相似文献   

6.
The metabolic activation of [14C]phenol resulting in covalent binding to proteins has been studied in rat liver microsomes. The covalent binding was dependent on microsomal enzymes and NADPH and showed saturation kinetics for phenol with a Km-value of 0.04 mM. The metabolites hydroquinone and catechol were formed at rates which were 10 or 0.7 times that of the binding rate of metabolically activated phenol. The effects of cytochrome P-450 inhibitors and cytochrome P-450 inducers on the metabolism and binding of phenol to microsomal proteins, suggest that cytochrome P-450 isoenzyme(s) other than P-450 PB-B or P-450 beta NF-B catalyses the metabolic activation of phenol. Furthermore, reconstituted mixed-function oxidase systems containing cytochrome P-450 PB-B and P-450 beta NF-B were (on basis of cytochrome P-450 content) 6 and 11 times less active in catalysing the formation of hydroquinone than microsomes. The isolated metabolites hydroquinone and catechol bound more extensively to microsomal proteins than phenol and the binding of these was not stimulated by NADPH. The binding occurring during the metabolism of phenol could be predicted by the rates of formation of hydroquinone and catechol and the rates by which the isolated metabolites were bound to proteins.  相似文献   

7.
P-450-dependent enzyme systems added to media of cultured rat embryos markedly increased the embryotoxicity of estradiol-17 beta. Increases were markedly attenuated by omission of NADPH, omission of enzyme, substitution of female for male rat liver as enzyme source, d) replacement of N2 with CO or replacement of estradiol-17 beta with diethylstilbestrol. Embryotoxicity correlated well (r = 0.84) with catecholestrogen generating activities. Addition of a catechol-methylating system failed to modify embryotoxicity even though large quantities of methoxyestrogens were formed. The results document that endogenous estrogen can be converted by P-450 to embryotoxic intermediates and suggest that reactive proximate metabolites are precatechols, perhaps epoxyenones.  相似文献   

8.
Recent studies of a number of volatile aromatic hydrocarbons have suggested that the formation of covalently bound metabolites arises solely through the intermediate formation of phenols. This study further examines the involvement of 1-naphthol in the in vivo and in vitro formation of covalently bound metabolites and pulmonary bronchiolar necrosis by naphthalene. Marked differences were observed in the rate of 1-naphthol formation in lung and liver microsomal incubations without correspondingly large differences between the rates of formation of covalently bound metabolites from naphthalene and 1-naphthol. Glutathione decreased covalent binding in hepatic microsomal incubations containing 14[C]1-naphthol but did not result in the formation of any of the glutathione adducts isolated from identical incubations containing 14[C]naphthalene. Tissue levels of covalently bound radioactivity in mice treated with 14[C]1-naphthol or 14[C]naphthalene were similar; however, in contrast to studies with naphthalene, 1-naphthol administration did not deplete tissue glutathione nor result in detectable tissue injury. These studies indicate that 1-naphthol is not an obligate intermediate in the formation of covalently bound metabolites from naphthalene nor does it appear to be a more proximate lung toxic metabolite.  相似文献   

9.
Testosterone metabolism by cytochrome P-450 isozymes RLM3 and RLM5 in a reconstituted system and by rat liver microsomes was examined. Eleven metabolites were detected. Two of these, found in spots 2 and 4 of a thin layer plate, were only formed by the rat liver microsomes and may represent reductive metabolites of testosterone. A number of monohydroxy metabolites were conclusively identified by gas chromatography-mass spectrometry. These include the 2-, 6 beta-, 7 alpha-, and 16 alpha-hydroxy isomers. Liver microsomes formed the 2 alpha- and 2 beta-epimers in a 1:2 ratio and both co-chromatographed with a third reduced metabolite in thin layer plate spot 4. In contrast with RLM5 about 90% of the 2-hydroxy isomer was the 2 alpha-epimer. RLM3 did not perform the 2-hydroxylation in detectable amounts. The 6 beta-isomer was a major metabolite of RLM3 and microsomes, but a minor product of metabolism by RLM5. In contrast, the 7 alpha-isomer was a minor metabolite of RLM3, was not formed by RLM5, and was a major microsomal metabolite. Hydroxylation at position 16 alpha was a major activity of RLM5 and the heterogeneous microsomal cytochromes, but with RLM3 it was a minor reaction. One new metabolite was found which appeared to be hydroxylated in the D-ring, had a mass spectrum different from both 16 alpha- and 16 beta-hydroxytestosterone, and was tentatively identified as a 15-hydroxy isomer. In agreement with the literature, androstene-3,17-dione was found to be an oxidative metabolite of testosterone by both microsomes and purified cytochrome P-450. It was a major metabolite of RLM5 but was not produced by RLM3. Studies with 18O2 and H218O conclusively show that oxidation of testosterone at C-17 does not involve transient incorporation of an oxygen atom in this position. A mechanism is suggested whereby cytochrome P-450 acts as a peroxidase in the formation of androstenedione.  相似文献   

10.
The vasodilatory effect of epoxyeicosatrienoic acids (EpETrE), especially 5(6)-EpETrE, has been reported recently and a role of P-450-dependent arachidonic acid monooxygenase metabolites was suggested in vasoregulation. Accordingly, the presence of P-450-dependent arachidonic acid monooxygenase was investigated in rat aortic smooth muscle cells. Incubation of the microsomes of rat cultured aortic smooth muscle cells with 14C-arachidonic acid in the presence of 1 mM NADPH resulted in the formation of oxygenated metabolites. The metabolites were separated and purified by reverse phase and straight phase high performance liquid chromatography and identified by gas chromatography-mass spectrometry. Identified metabolites were 5(6)-EpETrE, 5,6-dihydroxyeicosatrienoic acid (DiHETrE), and 14,15-DiHETrE. The formation of these metabolites was totally dependent on the presence of NADPH, and inhibitors of cytochrome P-450-dependent enzymes, SKF-525A and metyrapone, reduced the formation of these metabolites. This is the first report that cytochrome P-450-dependent arachidonic acid metabolites, especially 5(6)-EpETrE and 14(15)-EpETrE, can be produced in the microsomes of vascular smooth muscle cells of rats.  相似文献   

11.
R S Takazawa  H W Strobel 《Biochemistry》1986,25(17):4804-4809
Hexachlorobenzene (HCB) elicits concentration-dependent and saturable type 1 binding spectra when added to oxidized (Fe3+) cytochrome P-450 (CYT P-450) in control, phenobarbital- (PB) induced, and beta-naphthoflavone- (BNF) induced male Sprague-Dawley rat liver microsomes. The spectral binding constants (Ks) for HCB in control and PB-induced microsomes are 180 microM and 83 microM, respectively, and correlate inversely with the specific content of CYT P-450 (0.9 and 2.1 nmol/mg) in the two microsomal preparations. BNF-induced microsomes show type 1 interaction only at low HCB concentration. Overall biotransformation of HCB, monitored by loss of [14C]HCB from the reaction medium, is dependent on NADPH and intact microsomes. Dimethyl sulfoxide (Me2SO), a potent hydroxyl radical scavenger and the solvent used for HCB dissolution, does not affect the biotransformation of HCB in aerobic reactions. Pentachlorobenzene (PCB) appears to be the initial and major isolatable CYT P-450 mediated dechlorination product of HCB with NADPH-fortified rat liver microsomes. Trace levels of pentachlorophenol (PCP) and an unidentified metabolite are also observed. PCB formation is enhanced under anaerobic conditions but is inhibited by metyrapone and carbon monoxide. PCB formation is also inhibited with aerobic reaction conditions, while PCP formation is observed. The data indicate that CYT P-450 in hepatic microsomes supports the reductive dechlorination of HCB to PCB.  相似文献   

12.
Chiral analysis of the rat liver microsomal arachidonic acid epoxygenase metabolites shows enantioselective formation of 8,9-, 11,12-, and 14,15-cis-epoxyeicosatrienoic acids in an approximately 2:1, 4:1, and 2:1 ratio of antipodes, respectively. Animal treatment with the cytochrome P-450 inducer phenobarbital increased the overall enantiofacial selectivity of the microsomal epoxygenase and caused a concomitant inversion in the absolute configurations of its metabolites. These effects of phenobarbital were time-dependent and temporally linked to increases in the concentration of microsomal cytochrome P-450 enzymes. Reconstitution of the epoxygenase reaction utilizing several purified cytochrome P-450 demonstrated that the asymmetry of epoxidation is under cytochrome P-450 enzyme control. These results established that the chirality of the hepatic arachidonic acid epoxygenase is under regulatory control and confirm cytochromes P-450 IIB1 and IIB2 as two of the endogenous epoxygenases induced in vivo by phenobarbital.  相似文献   

13.
1. Liver microsomes from rats were considerably more active in metabolizing benzo[f]quinoline (B f Q) than those from brown bullheads (Ictalurus nebulosus). 2. The main B f Q metabolites formed by both rat and brown bullhead liver microsomes were qualitatively similar and included B f Q-7,8-dihydrodiol, B f Q-9,10-dihydrodiol, B f Q-N-oxide, 7-hydroxy B f Q, and 9-hydroxy B f Q. 3. The liver microsomes from control brown bullheads and rats metabolized B f Q primarily at the 7,8-and 9,10-positions, respectively, whereas in the case of microsomes from 3-methylcholanthrene (3-MC)-treated rats or brown bullheads, the major site of metabolic attack was the 7,8-position. 4. A 3-MC-type of cytochrome P-450 appears to be primarily responsible for the oxidation of B f Q by control brown bullhead liver microsomes, whereas a phenobarbital-inducible type of cytochrome P-450 seems to be involved in the metabolism of B f Q by control rat liver microsomes.  相似文献   

14.
9-Methylfluorene was metabolized by rat liver microsomes to 9-hydroperoxy-9-methylfluorene and 9-hydroxy-9-methylfluorene. The results were confirmed by using a reconstituted cytochrome P-450 oxygenase system purified from phenobarbital-induced rat liver which established its involvement. SKF-525A strongly inhibited the formation of both oxygenation products. Cytochrome P-450 alone brought about the conversion of the hydroperoxide to its alcohol. NADPH augmented the peroxidative reaction, but the presence of NADPH-cytochrome P-450 reductase was without effect. Certain microsomal preparations and reconstituted enzyme yielded little or no detectable amounts of hydroperoxide. This was due to a too rapid conversion of the hydroperoxide to its alcohol. The addition of metyrapone, a compound that inhibited such conversion, resulted in accumulation of 9-hydroperoxy-9-methylfluorene for positive identification. Incubation of 9-methylfluorene with microsomes and NADPH resulted in covalent binding of its metabolite to microsomal proteins. Incubation of 14C-labeled 9-hydroperoxy-9-methylfluorene caused covalent binding of label to proteins, RNA, and DNA.  相似文献   

15.
Phenol and 1-naphthol, products of benzene and naphthalene biotransformation, are metabolized during O2- generation by xanthine oxidase/hypoxanthine and phorbol myristate acetate (PMA)-stimulated human neutrophils. The addition of 1-naphthol to xanthine oxidase/hypoxanthine incubations resulted in the formation of 1,4-naphthoquinone (1,4-NQ) whereas phenol addition yielded only small quantities of hydroquinone, catechol and a unidentified reducible product but not 1,4-benzoquinone. This formation of 1,4-NQ was dependent upon hypoxanthine, xanthine oxidase, and 1-naphthol and was inhibited by the addition of superoxide dismutase (SOD) demonstrating that the conversion was O2-mediated. During O2- generation by PMA-stimulated neutrophils, the addition of phenol interfered with luminol-dependent chemiluminescence and resulted in covalent binding of phenol to protein. Protein binding was 80% inhibited by the addition of azide or catalase to the incubations indicating that bioactivation was peroxidase-mediated. In contrast, the addition of 1-naphthol to PMA-stimulated neutrophils interfered with superoxide-dependent cytochrome c reduction as well as luminol-dependent chemiluminescence and also resulted in protein binding. Protein binding was only partially inhibited by azide or catalase. The addition of SOD in combination with catalase resulted in a significantly greater inhibition of binding when compared to that of catalase alone. The results of these experiments indicate that phenol and 1-naphthol are converted to reactive metabolites during superoxide generating conditions but by different mechanisms. The formation of reactive metabolites from phenol was almost exclusively peroxidase-mediated whereas the bioactivation of 1-naphthol could occur by two different mechanisms, a peroxidase-dependent and a direct superoxide-dependent mechanism.  相似文献   

16.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

17.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

18.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

19.
J J Sheets  R W Estabrook 《Biochemistry》1985,24(23):6591-6597
To investigate the potential interaction of the various pathways of androgen hydroxylation, we have conducted studies to identify the profile of products formed during the time course of metabolism of androst-4-ene-3,17-dione (AD). Incubates containing AD, NADPH, and liver microsomes (from rats pretreated with phenobarbital) were sampled at times between 0 and 20 min and the metabolites resolved by reverse-phase (C18) high-performance liquid chromatography. By this method, the pattern of formation and of utilization of eight major primary and secondary metabolites of AD was determined. We report here the formation of two previously unidentified major metabolites of AD: 6 beta,16 alpha-dihydroxyandrost-4-ene-3,17-dione and 6 beta,16 beta-dihydroxyandrost-4-ene-3,17-dione. We propose that liver microsomal cytochromes P-450 can sequentially hydroxylate a single molecule of AD at multiple sites. These hydroxylase activities are presumably a result of multiple cytochrome P-450 isozymes acting on AD resulting in a transient time course for the appearance of some monohydroxylated metabolites. In addition, a unidirectional conversion of the metabolite 16 alpha-hydroxyandrost-4-ene-3,17-dione to 16 beta-hydroxyandrost-4-ene-3,17-dione is described. Evidence is provided to support the role of cytochrome P-450 in catalyzing this reaction.  相似文献   

20.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号