首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The carotid chemoreceptors of narcotized, vagotomized and spontaneously breathing hydropenic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood penic cats in hypertonic mannite diuresis were stimulated by perfusion with venous blood for 70 min. Elevation of blood pressure at the innervated kidneys was prevented by an automatically controlled balloon located within the aorta. Stimulation of the chemoreceptors intensified respiration and raised the arterial systemic pressure. With the renal arteries at constant pressure, the effective renal plasma flow and the glomerular filtration rate significantly declined. The filtration fraction remained unchanged. The absolute urinary and sodium excretion did not change significantly, whereas the fractional time-volume, fractional sodium excretion, and the fractional osmotic excretion significantly increased. The fractional tubular reabsorption of osmotically free water was significantly enhanced. These reactions subsided during subsequent perfusion of the glomerula carotici with arterial blood. The results suggest that tubular sodium reabsorption is inhibited by stimulation of the carotid chemoreceptors, although re-adjustment of renal perfusion and filtrate volume cannot be excluded.  相似文献   

2.
Studies were performed in conscious, chronically catheterized male Sprague-Dawley rats to investigate the effect of administered atrial natriuretic peptide (ANP) on blood pressure, renal hemodynamics and urinary electrolyte excretion. Studies were performed on young adult (3-4 month old) rats and on aging rats (18-24 months of age). Low dose ANP (80 ng/kg/min for 60 min) had no effects on renal hemodynamics in either young or old rats and produced only a slight blood pressure reduction in young animals. No effect on urinary electrolyte excretion was evident in young rats whereas in the old animals, low dose ANP produced large rises in the rate of sodium excretion, fractional excretion of sodium and urine flow rate. A four fold higher dose of ANP evoked a moderate natriuretic and a marked antihypertensive response in young rats. Time control studies indicated that time alone had no influence on urinary sodium excretion rate, the fractional excretion of sodium or urine flow rate. These studies indicate a much enhanced sensitivity to the natriuretic effects of administered ANP by the kidneys of old rats.  相似文献   

3.
The effects of felodipine on renal hemodynamics and excretion were evaluated in the anesthetized dog. Unilateral renal arterial infusion of felodipine produced ipsilateral increases in the absolute and fractional excretion of sodium and water which were greater than those of potassium; these effects occurred in the absence of changes in mean arterial pressure, renal blood flow, or glomerular filtration rate. There were no significant effects on renal hemodynamic or excretory function in the contralateral kidney. The unilateral renal arterial infusion of isotonic saline or vehicle produced no significant effects on renal hemodynamic or excretory function in either ipsilateral or contralateral kidney. Felodipine, a calcium antagonist with vasodilator antihypertensive properties, in doses which do not affect systemic or renal hemodynamics in the dog, increased urinary flow rate and sodium excretion by decreasing renal tubular water and sodium reabsorption. As a vasodilator antihypertensive agent, felodipine possesses potentially advantageous diuretic and natriuretic properties.  相似文献   

4.
Thomas P. Green 《Life sciences》1984,34(22):2169-2176
The effects on renal sodium excretion of two systemic vasodilators, hydralazine and diazoxide, were investigated in volume expanded, anesthetized rats with unilaterally denervated kidneys. Urinary sodium excretion and fractional excretion of filtered sodium increased following hydralazine but decreased following diazoxide. Changes in renal hemodynamics were dissimilar as well: renal plasma flow was increased following hydralazine, but unchanged with diazoxide. All changes in renal sodium excretion and renal hemodynamics following hydralazine were prevented by pretreatment with indomethacin. Renal denervation accentuated the increases in fractional sodium excretion and renal blood flow that occured following hydralazine.Hydralazine and diazoxide differ substantially in their effects on renal sodium excretion, apparently due to the stimulation of renal prostaglandins by the former agent. Although renal innervation attenuates the natriuretic effect of hydralazine, stimulation of the sympathetic nervous system does not account for differences in the renal effects of these two drugs.  相似文献   

5.
Experiments were conducted to assess the effect of furosemide or amiloride alone and a combination of both agents on each kidney in anesthetized 2-kidney, 1 clip Goldblatt hypertensive rats (n = 25). Intravenous infusion of furosemide alone (1.02 mg/kg.hr) significantly reduced the blood pressure by 14 +/- 5 mmHg. There were 6- to 10-fold increases in water, absolute sodium and fractional sodium excretions and a 2-fold increase in potassium excretion in the nonclipped kidney. A smaller but significant increase in the excretory function was also observed in the clipped kidney. There was no significant change in GFR of both kidneys. Indomethacin pretreatment (2 mg/kg) failed to significantly alter the vasodepressor and renal responses to furosemide in both hypertensive and normal rats. Removal of the renal artery clip from the hypertensive rats reduced the blood pressure by 12 +/- 3 mmHg and enhanced the function of the ipsilateral, unclipped kidney. Subsequent administration of furosemide further increased the excretory response. Administration of amiloride alone (2.4 mg/kg.hr) or with furosemide into hypertensive rats reduced the arterial pressure and increased excretion rates of urine flow and urinary sodium. Potassium excretion rate decreased bilaterally in amiloride treated rats but did not alter significantly in rats which received a combination of amiloride and furosemide. These results indicate that diuretics ameliorate the excretory function of both the stenotic kidney and the nonstenotic kidney and that the improvement of the kidney function is independent of prostaglandin. Furthermore, removal of the stenosis accentuates the beneficial effect of diuretics on the kidney.  相似文献   

6.
Prostaglandin E2, when infused into the renal artery of the dog, is a vasodilator and increases both renal interstitial hydrostatic pressure and sodium excretion. Similar studies in the rat, however, have been inconclusive. The present study examined the effect of prostaglandin E2 infusion into the renal interstitium, by means of a chronically implanted matrix, on renal blood flow, renal interstitial hydrostatic pressure and sodium excretion in the rat. Prostaglandin E2 was continuously infused directly into the kidney interstitium to mimic endogenous prostaglandin E2 production by renal cells. The maximum change in each of these parameters occurred when 10(-5) M PGE2 was infused. Renal blood flow increased from 4.70 +/- 0.91 to 5.45 +/- 0.35 ml/min (p less than 0.05) while renal interstitial hydrostatic pressure decreased from 3.9 +/- 0.4 to 2.6 +/- 0.5 mmHg (p less than 0.05) and fractional excretion of sodium decreased from 1.02 +/- 0.20 to 0.61 +/- 0.12% (p less than 0.05). Thus, the present study demonstrates that renal interstitial infusion of prostaglandin E2 increases total renal blood flow but decreases both renal interstitial hydrostatic pressure and urinary sodium excretion in the rat.  相似文献   

7.
Previous studies have shown that atrial natriuretic factor (ANF) inhibits renin secretion whereas cilazapril blocks angiotensin II generation via converting enzyme inhibition. Both agents enhance renal excretory function. The present study was conducted to test whether the renin-angiotension system is involved in the ANF-induced renal effects. ANF was administered to anesthetized normal rats (n = 16) with or without a simultaneous infusion of cilazapril. Single bolus injections of ANF at doses of 2.5 micrograms/kg and 5.0 micrograms/kg significantly decreased mean arterial blood pressure by 6.8 +/- 2.3% and 9.4 +/- 2.2%, respectively. The corresponding increases in glomerular filtration rate were 5.6 +/- 3.7% and 8.4 +/- 2.8%, in absolute sodium excretion were 55.0 +/- 18.5% and 105.2 +/- 39.9%, and in urine flow were 24.8 +/- 9.3% and 35.6 +/- 14.6%. Intravenous infusion of cilazapril (33 micrograms/kg.min) reduced the arterial blood pressure, elevated the glomerular filtration rate and increased sodium and water excretion. The corresponding doses of ANF administration during continuous infusion of cilazapril further decreased blood pressure by 8.3 +/- 1.9% and 10.9 +/- 5.4%, respectively. However, there were no significant changes in the glomerular filtration rate and sodium and water excretion. The failure of ANF to exhibit a renal effect was irrelevant to the lowering blood pressure induced by cilazapril. These results suggest that reduced endogenous angiotensin II generation contributes to the renal, but not the hypotensive, effect of ANF.  相似文献   

8.
Chronic hyperleptinemia induces arterial hypertension in experimental animals and may contribute to the development of hypertension in obese humans; however, the mechanism of hypertensive effect of leptin is not completely elucidated. We investigated the effect of leptin on whole-body oxidative stress, nitric oxide production, and renal sodium handling. The study was performed on male Wistar rats divided into 3 groups: 1) control, fed standard chow ad libitum, 2) leptin-treated group, receiving leptin injections (0.25 mg/kg twice daily s.c. for 7 days), 3) pair-fed group, in which food intake was adjusted to the leptin group. Leptin caused 30.5% increase in systolic blood pressure. Plasma concentration and urinary excretion of 8-isoprostanes in animals receiving leptin was 46.4% and 49.2% higher, respectively. The level of lipid peroxidation products, malonyldialdehyde + 4-hydroxyalkenals, increased by 52.5% in the renal cortex and by 48.4% in the renal medulla following leptin treatment, whereas aconitase activity decreased in these regions of the kidney by 45.3% and 39.2%, respectively. Urinary excretion of nitric oxide metabolites (NOx) was 55.0% lower, and fractional excretion of NOx was 55.8% lower in the leptin-treated group. Urinary excretion of cGMP decreased in leptin-treated rats by 26.3%. Following leptin treatment, absolute and fractional sodium excretion decreased by 35.0% and 41.2%, respectively. These results indicate that hyperleptinemia induces systemic and intrarenal oxidative stress, decreases the amount of bioactive NO possibly due to its degradation by reactive oxygen species, and causes renal sodium retention by stimulating tubular sodium reabsorption. NO deficiency and abnormal renal Na+ handling may contribute to leptin-induced hypertension.  相似文献   

9.
Albumin or Dextran solutions of varying concentration were infused into the renal artery of hydropenic dogs. Their effect on urine flow, sodium excretion, creatinine and PAH clearance, single nephron GFR, fractional and absolute fluid reabsorption in the proximal convolution, reabsorptive t1/2, and hydrostatic pressures in the proximal tubules and adjacent capillaries was compared with a similar infusion of isotonic saline solution. Six, 9, 12, 18 and 25% albumin and 6% Dextran solution did not significantly change the measured parameters. Infusion of 9 and 12% Dextran solution elicited a decrease in water and sodium excretion as well as absolute and fractional proximal tubular fluid reabsorption to a 5% level of significance. Infusion of 18% Dextran was accompanied by a marked decrease in total and proximal reabsorption combined with a decline of GFR, PAH clearance, and hydrostatic pressures in tubules and peritubular capillaries. The results do not support the hypothesis of a direct action of oncotic pressure on tubular fluid reabsorption; the above described effects of Dextran seem to be accounted for by its other "pharmacological" effect.  相似文献   

10.
The role of renal nerves in the effects of concomitant NO synthase and non-selective ET(A/)ET(B) receptor inhibition on renal function was investigated in conscious normotensive Wistar rats. NO synthase inhibition alone (10 mg/kg b. w. i.v. L-NAME) in sham-operated rats with intact renal nerves induced an increase in systolic, diastolic and mean arterial pressure, urine flow rate, sodium, chloride and calcium excretion (p<0.05). The effect of L-NAME was markedly reduced by bosentan (10 mg/kg b.w. i.v.) and the values of urine flow rate, sodium, chloride and calcium excretions returned to control level (p<0.05). L-NAME administration one week after a bilateral renal denervation increased blood pressure to a similar extent as in sham-operated rats but decreased urine flow rate (p<0.05) and did not change electrolyte excretion. ET(A/)ET(B) receptor inhibition with bosentan during NO synthase inhibition in the renal denervated rats did not produce changes in urine flow rate or electrolyte excretion. NO synthase inhibition as well as concurrent NO synthase and ET(A/)ET(B) receptor inhibition did not change clearance of inulin or paraaminohippuric acid in sham-operated or renal denervated rats. These results indicate that renal sympathetic nerves play an important modulatory role in NO and endothelin induced effects on renal excretory function.  相似文献   

11.
Our previous study on kidney cortical slices showed that Bay K 8644, a dihydropyridine calcium channel agonist, produced a dose-dependent inhibitory action on the release of renin. The present study was performed to examine the effect of Bay K 8644 on renal function and renin secretion in vivo. When Bay K 8644 was directly infused into the renal artery of anesthetized rats, 2 micrograms/kg/min had no effect on renal blood flow (RBF) and glomerular filtration rate (GFR), but decreased urine flow (UF), urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) by about 30%, 55% and 35%, respectively, thereby suggesting that Bay K 8644 enhanced the tubular reabsorption of water and sodium. When 10 micrograms/kg/min were infused, RBF, GFR, UF, UNaV and FENa decreased to about 95%, 70%, 35%, 35% and 30% of each control value. The administration of Bay K 8644 at 10 micrograms/kg/min did not influence the basal levels of plasma renin activity (PRA) and renin secretion rate (RSR), but did inhibit significantly isoproterenol-induced increasing effects on PRA and RSR. These results indicate that the activation of voltage-dependent calcium channels with Bay K 8644 influences the control of renal function and renin secretion in vivo.  相似文献   

12.
The mechanism by which blood pressure rises in the SHR strain remains to be elucidated. Since the long-term changes in renal sodium tubule handling associated with genetic hypertension have not been examined in detail, we hypothesized that SHR hypertension development may result from sustained renal sympathetic nerve overactivity and consequently decreased urinary sodium excretion. To test this hypothesis, we assessed renal sodium handling and cumulative sodium balance for 10 consecutive weeks in unanesthetized renal-denervated SHR, performed prior to the start of the entire 10-week metabolic studies, and their age-matched normotensive and hypertensive controls. The present investigation shows that SHR excreted less sodium than Wistar-Kyoto (WKy) rats during the initial 3-week observation period (p <0.05). This tendency was reversed when SHR were 10-wk old. Fractional urinary sodium excretion (FENa+) was significantly lower in 3 and 6-wk-old SHR when compared with the WKy age-matched group, as follows: SHR3-wk-old: 0.33 +/- 0.09% and WKy3-wk-old: 0.75 +/- 0.1% (P <0.05); SHR(6-wk-old): 0.52 +/- 0.12% and WKy6-wk-old: 0.83 +/- 0.11%. The decreased FENa+ in young SHR was accompanied by a significant increase in proximal sodium reabsorption (FEPNa+) compared with the normotensive age-matched control group (P <0.01). This increase occurred despite unchanged creatinine clearance (CCr) and fractional post-proximal sodium excretion (FEPPNa+)in all groups studied. The decreased urinary sodium excretion response in SHR up to the age of 6 weeks was significantly eradicated by bilateral renal denervation of SHR3-wk-old: 0.33 +/- 0.09% and SHR6-wk-old: 0.52 +/- 0.12% to DxSHR 3-wk-old: 1.02 +/- 0.2% and DxSHR 6-wk-old: 0.94 +/- 0.2% (P <0.01), in renal denervated rats. The current data suggest that neural pathways may play an instrumental role on renal sodium reabsorption as result of sustained sympathetic nervous system overexcitability.  相似文献   

13.
The effect of acute infusion of the prostaglandin synthetase inhibitors - meclofenamate or indomethacin - was examined in awake rats. Studies were performed in normal rats undergoing either sodium or water diuresis and in salt-replete rats with chronic renal insufficiency. Prostaglandin synthetase inhibitors had no effect on renal plasma flow, glomerular filtration rate or fractional excretion of sodium in any of the groups. Absolute urinary excretion rates for sodium and potassium decreased only in the normal, salt-replete rats. In contrast, prostaglandin synthetase inhibitors consistently decreased urinary flow and osmolar clearance under all experimental conditions studied. In the normal, salt-replete rats the fall in urine flow was preceded by an increase in urinary excretion of cyclic AMP. These results show that inhibitors of prostaglandin synthesis enhance the ability of the kidney to reabsorb water. This effect may be secondary to increased cyclic AMP generation and to increased urea recirculation resulting in higher urea accumulation in the renal medulla.  相似文献   

14.
Both dopamine (DA) and atrial natriuretic peptide (ANP) have been postulated to exert similar effects on the kidney, participating in the regulation of body fluid and sodium homeostasis. In the present study, experiments were performed in anesthetized and isotonic sodium chloride volume expanded rats. After acute volume expansion at 15 % of body weight during 30 min, glomerular filtration rate, urine output, sodium excretion, fractional sodium excretion, proximal and distal sodium excretion and blood pressure were measured. In additional groups we administered ANP or haloperidol or the combination of both to volume expanded animals. Blockade of DA receptors with haloperidol, attenuated diuretic and natriuretic responses to volume load. Proximal sodium excretion was not modified by haloperidol in all experimental groups of rats. Reduction in distal tubular excretion was induced by haloperidol in saline infusion expanded rat but not in ANP treated expanded animals. In conclusion, when exaggerated volume expansion is provoked, both DA and ANP exert renal tubular events, but ANP have a major central role in the regulation of renal sodium handling.  相似文献   

15.
It is well established that activation of endothelin B (ETB) receptor induces natriuresis and diuresis and thus reduces blood pressure. However, the site of action of ETB receptor is debatable. The present study was undertaken to address the role of renal medullary ETB receptor in renal excretory function. In volume-expanded Sprague-Dawley rats, infusion of the ETB antagonist A192621 at 0.5 mg/kg/hr to the renal medulla induced an immediate and significant reduction of urine flow rate that was 87.5% +/- 7.1%, 68% +/- 20%, and 58.3% +/- 15.5% of the control value at 10, 30, and 60 mins, respectively (n=5, P < 0.05 at each time point). Following intramedullary infusion of A192621, urinary sodium excretion remained unchanged during the first 20 mins but started to decline thereafter with a maximal effect at 60 mins. Changes in urinary excretion of potassium and chloride followed the same pattern of changes as for urinary sodium. In contrast, urinary osmolality gradually and significantly increased (control: 419 +/- 66; A192621 at 60 mins: 637 +/- 204 mOsm/kg H2O, P < 0.05). Over a 60-min period of intramedullary infusion of A192621, none of the hemodynamic parameters examined, including mean arterial pressure, renal blood flow, or medullary blood flow, were affected. These data suggest that: (i) intramedullary blockade of ETB receptor produces antidiuresis and antinatriuresis independently of hemodynamic changes, and (ii) the immediate response to intramedullary blockade of ETB receptor is the reduction of water excretion followed by the reduction of sodium excretion.  相似文献   

16.
The pressure-natriuresis relationship was studied in anesthetized, 7- to 9-week-old control spontaneously hypertensive rats (SHR) and in SHR that had been treated with hydralazine (20 mg.kg-1.day-1 in drinking water) starting at 4-5 weeks of age. To minimize reflex changes in kidney function during changes in renal artery pressure, neural and hormonal influences on the kidney were fixed by surgical renal denervation, adrenalectomy, and infusion of a hormone cocktail (330 microL.kg-1.mikn-1) containing high levels of aldosterone, arginine vasopressin, hydrocortisone, and norepinephrine dissolved in 0.9% NaCl containing 1% albumin. Changes in renal function were measured using standard clearance techniques, while renal artery pressure was varied between 136 +/- 1 and 186 +/- 2 mmHg (1 mmHg = 133.32 Pa) in control SHR (n = 10) and between 113 +/- 1 and 162 +/- 2 mmHg in treated SHR (n = 11). Mean arterial pressure (+/- SE) under Inactin anesthesia was 172 +/- 3 mmHg in control SHR and 146 +/- 3 mmHg in treated SHR (p less than 0.05). Where renal artery pressure overlapped between groups, there were no significant differences in glomerular filtration rate. Renal blood flow was also similar in both groups, although at 160 mmHg blood flow was slightly but significantly reduced in treated SHR. Urine flow and total and fractional sodium excretion increased similarly with increases in renal artery pressure in both groups, but the pressure-natriuresis curve in hydralazine-treated SHR was displaced to the left along the pressure axis. The data indicate that chronic administration of hydralazine in young SHR enhances fractional sodium excretion, suggesting that tubular reabsorption of sodium is decreased by hydralazine.  相似文献   

17.
Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 micrograms/min, i.v.), an alpha 1-adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (-67 +/- 9 vs. -33 +/- 8%), glomerular filtration rate (-60 +/- 9 vs. -7 +/- 20%), urine flow (-61 +/- 7 vs. -24 +/- 11%), sodium excretion (-51 +/- 15 vs. -32 +/- 21%), and fractional excretion of sodium (-50 +/- 9 vs. -25 +/- 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (-54 +/- 10 vs. -30 +/- 14%), glomerular filtration rate (-51 +/- 11 vs. -19 +/- 17%), urine flow (-55 +/- 10 vs. -39 +/- 10%), sodium excretion (-70 +/- 9 vs. -59 +/- 11%), and fractional excretion of sodium (-53 +/- 10 vs. -41 +/- 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A new neurohypophyseal hormone analogue, Ala-Gly-[Arg8]-vasopressin, was synthesized by the stepwise solution techniques and its effect on systemic blood pressure and renal function was examined in nondiuretic Sprague-Dawley rats. Clearance of inulin was used to study glomerular filtration rate. Intravenous administration of 50 pmole/100 g. b. wt. Ala-Gly-[Arg8]-vasopressin caused diuresis and natriuresis without significant change of mean arterial blood pressure. The fractional excretion of sodium was increased by 225% within 10 min after the analogue administration. The present study suggests that this analogue has a direct effect on renal tubular transport of electrolyte independent of affecting systemic circulation.  相似文献   

19.
Effects of the cyclooxygenase inhibitors indomethacin, naproxen and the thromboxane synthetase inhibitor imidazole on renal sodium water and p-aminohippurate excretion were investigated in sodium loaded conscious rats of different ages. Renal and intrarenal blood flow were studied in anaesthetized adult rats. Indomethacin and naproxen reduced PAH excretion in 5- and 10-day-old rats but not in rats of older ages. Imidazole failed to influence PAH-excretion in young animals. The excretion of PAH was decreased in adult rats at 10 and 60 min following imidazole administration, but not after longer time interval (120 min). Following indomethacin and naproxen administration urine output was decreased in 5-, 10- and 15-day-old rats, but not in rats of older ages. Effects of imidazole on electrolyte excretion can be demonstrated in adult rats only. Cardiac output was not altered by the three drugs. Blood pressure was elevated after indomethacin, but remained unchanged after naproxen and imidazole treatment. Renal and cortical blood flow remained unaltered and no redistribution was seen in intrarenal blood flow after indomethacin, naproxen and imidazole administration. The experimental data suggest that prostaglandins and thromboxanes are involved in the regulation of kidney function, but prostaglandins in the rat--in contrast to the dog--do not seem to play a major role in the regulation of renal vascular tone in adult animals.  相似文献   

20.
A state of renal tubular acidosis has been produced in rats by the administration of sodium maleate or acetazolamide (proximal tubular acidosis) and of lithium chloride of amiloride (distal tubular acidosis). During progressive alkaline diuresis, delta PCO2 (urine minus blood PCO2) increases significantly in rats presenting proximal tubular acidosis. Delta PCO2 is significantly depressed in rats presenting distal tubular acidosis. In well defined conditions of bicarbonate or phosphate excretion, delta PCO2 is a valuable index of distal ion secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号