首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and stability of the 16-amino-acid-residue fragment [IG(46-61)] corresponding to the C-terminal beta-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus was investigated by means of CD and NMR spectroscopy and by differential scanning calorimetry. The CD and 2D NMR experiments were carried out (i) in water at different temperatures and (ii) at one temperature (305 K), with only CD, at different TFE concentrations. Our results show that the IG(46-61) peptide possesses organized three-dimensional structure at all investigated temperatures. The three-dimensional structure of the IG(46-61) peptide resembles the general shape of a beta-hairpin that is also observed for this peptide in the experimental structure of the B3 domain in the whole G protein; the structure is stabilized by hydrophobic interactions between nonpolar side chains. Our study shows that the melting temperature of the IG(46-61) peptide is about 320 K which supports the hypothesis that the investigated peptide can serve as a folding initiation site of the B3 domain of the immunoglobulin binding protein G.  相似文献   

2.
Bovine beta-lactoglobulin is denatured by increased temperature (heat denaturation) and by decreased temperature (cold-denaturation) in the presence of 4 M urea at pH 2.5. We characterized the structure of the cold-denatured state of beta-lactoglobulin using circular dichroism (CD), small-angle X-ray scattering (SAXS) and heteronuclear nuclear magnetic resonance (NMR). CD and SAXS indicated that the cold-denatured state, in comparison with the highly denatured state induced by urea, is rather compact, retaining some secondary structure, but no tertiary structure. The location of the residual structures in the cold-denatured state and their stability were characterized by 1H/2H exchange combined with heteronuclear NMR. The results indicated that the residues adjacent to the disulfide bond (C106-C119) connecting beta-strands G and H had markedly high protection factors, suggesting the presence of a native-like beta-hairpin stabilized by the disulfide bond. Since this beta-hairpin is conserved between different conformational states, including the kinetic refolding intermediate, it should be of paramount importance for the folding and stability of beta-lactoglobulin. On the other hand, the non-native alpha-helix suggested for the folding intermediate was not detected in the cold-denatured state. The 1H/2H exchange experiments showed that the protection factors of a mixture of the native and cold-denatured states is strongly biased by that of the labile cold-denatured state, consistent with a two-process model of the exchange.  相似文献   

3.
Najbar LV  Craik DJ  Wade JD  McLeish MJ 《Biochemistry》2000,39(19):5911-5920
Using CD and 2D (1)H NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the (1)H NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Halpha chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and HD-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.  相似文献   

4.
Platt GW  Simpson SA  Layfield R  Searle MS 《Biochemistry》2003,42(46):13762-13771
A F45W mutant of yeast ubiquitin has been used as a model system to examine the effects of nonnative local interactions on protein folding and stability. Mutating the native TLTGK G-bulged type I turn in the N-terminal beta-hairpin to NPDG stabilizes a nonnative beta-strand alignment in the isolated peptide fragment. However, NMR structural analysis of the native and mutant proteins shows that the NPDG mutant is forced to adopt the native beta-strand alignment and an unfavorable type I NPDG turn. The mutant is significantly less stable (approximately 9 kJ mol(-1)) and folds 30 times slower than the native sequence, demonstrating that local interactions can modulate protein stability and that attainment of a nativelike beta-hairpin conformation in the transition state ensemble is frustrated by the turn mutations. Surprising, alcoholic cosolvents [5-10% (v/v) TFE] are shown to accelerate the folding rate of the NPDG mutant. We conclude, backed-up by NMR data on the peptide fragments, that even though nonnative states in the denatured ensemble are highly populated and their stability further enhanced in the presence of cosolvents, the simultaneous increase in the proportion of nativelike secondary structure (hairpin or helix), in rapid equilibrium with nonnative states, is sufficient to accelerate the folding process. It is evident that modulating local interactions and increasing nonnative secondary structure propensities can change protein stability and folding kinetics. However, nonlocal contacts formed in the global cooperative folding event appear to determine structural specificity.  相似文献   

5.
In this paper, a simulation of the folding process, based on a random perturbations of the phi, psi, chi1 dihedral angles, is proposed to approach the formation at the atom level of both principal elements of protein secondary structure, the alpha-helix and the beta-hairpin structures. Expecting to understand what may happen in solution during the formation of such structures, the behaviour of large sets of random conformations that are generated for small oligopeptides was analysed. Different factors that may influence the folding (as conformational propensity, hydrophobic interactions and side-chain mobility) were investigated. The difference between the corresponding theoretical folding and the real conformational diversity that is observed in solution is appraised by a comparison between the calculated and observed NMR secondary chemical shifts. From this study it appears that hydrophobic interactions and mobility represent the principal factors that initiate folding and determine the observed hydrogen-bond pattern, which subsequently allows packing between the peptide side chains.  相似文献   

6.
The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.  相似文献   

7.
M G Zagorski  C J Barrow 《Biochemistry》1992,31(24):5621-5631
Beta-peptide is a major component of amyloid deposits in Alzheimer's disease. We report here a proton nuclear magnetic resonance (NMR) spectroscopic investigation of a synthetic peptide that is homologous to residues 1-28 of beta-peptide [abbreviated as beta-(1-28)]. The beta-(1-28) peptide produces insoluble beta-pleated sheet structures in vitro, similar to the beta-pleated sheet structures of beta-peptide in amyloid deposits in vivo. For peptide solutions in the millimolar range, in aqueous solution at pH 1-4 the beta-(1-28) peptide adopts a monomeric random coil structure, and at pH 4-7 the peptide rapidly precipitates from solution as an oligomeric beta-sheet structure, analogous to amyloid deposition in vivo. The NMR work shown here demonstrates that the beta-(1-28) peptide can adopt a monomeric alpha-helical conformation in aqueous trifluoroethanol solution at pH 1-4. Assignment of the complete proton NMR spectrum and the determination of the secondary structure were arrived at from interpretation of two-dimensional (2D) NMR data, primarily (1) nuclear Overhauser enhancement (NOE), (2) vicinal coupling constants between the amide (NH) and alpha H protons, and (3) temperature coefficients of the NH chemical shifts. The results show that at pH 1.0 and 10 degrees C the beta-(1-28) peptide adopts an alpha-helical structure that spans the entire primary sequence. With increasing temperature and pH, the alpha-helix unfolds to produce two alpha-helical segments from Ala2 to Asp7 and Tyr10 to Asn27. Further increases in temperature to 35 degrees C cause the Ala2-Asp7 section to become random coil, while the His13-Phe20 section stays alpha-helical. A mechanism involving unfavorable interactions between charged groups and the alpha-helix macrodipole is proposed for the alpha-helix----beta-sheet conversion observed at midrange pH.  相似文献   

8.
Fifty-five molecular dynamics runs of two three-stranded antiparallel beta-sheet peptides were performed to investigate the relative importance of amino acid sequence and native topology. The two peptides consist of 20 residues each and have a sequence identity of 15 %. One peptide has Gly-Ser (GS) at both turns, while the other has d-Pro-Gly ((D)PG). The simulations successfully reproduce the NMR solution conformations, irrespective of the starting structure. The large number of folding events sampled along the trajectories at 360 K (total simulation time of about 5 micros) yield a projection of the free-energy landscape onto two significant progress variables. The two peptides have compact denatured states, similar free-energy surfaces, and folding pathways that involve the formation of a beta-hairpin followed by consolidation of the unstructured strand. For the GS peptide, there are 33 folding events that start by the formation of the 2-3 beta-hairpin and 17 with first the 1-2 beta-hairpin. For the (D)PG peptide, the statistical predominance is opposite, 16 and 47 folding events start from the 2-3 beta-hairpin and the 1-2 beta-hairpin, respectively. These simulation results indicate that the overall shape of the free-energy surface is defined primarily by the native-state topology, in agreement with an ever-increasing amount of experimental and theoretical evidence, while the amino acid sequence determines the statistically predominant order of the events.  相似文献   

9.
The conformational analysis of two synthetic octapeptides, Boc-Leu-Val-Val-D-Pro-L-Ala-Leu-Val-Val-OMe (1) and Boc-Leu-Val-Val-D-Pro-D-Ala-Leu-Val-Val-OMe (2) has been carried out in order to investigate the effect of beta-turn stereochemistry on designed beta-hairpin structures. Five hundred megahertz (1)H NMR studies establish that both peptides 1 and 2 adopt predominantly beta-hairpin conformations in methanol solution. Specific nuclear Overhauser effects provide evidence for a type II' beta-turn conformation for the D-Pro-L-Ala segment in 1, while the NMR data suggest that the type I' D-Pro-D-Ala beta-turn conformation predominates in peptide 2. Evidence for a minor conformation in peptide 2, in slow exchange on the NMR time scale, is also presented. Interstrand registry is demonstrated in both peptides 1 and 2. The crystal structure of 1 reveals two independent molecules in the crystallographic asymmetric unit, both of which adopt beta-hairpin conformations nucleated by D-Pro-L-Ala type II' beta-turns and are stabilized by three cross-strand hydrogen bonds. CD spectra for peptides 1 and 2 show marked differences, presumably as a consequence of the superposition of spectral bands arising from both beta-turn and beta-strand conformations.  相似文献   

10.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

11.
Tang Y  Goger MJ  Raleigh DP 《Biochemistry》2006,45(22):6940-6946
The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed.  相似文献   

12.
NMR studies of protein denatured states provide insights into potential initiation sites for folding that may be too transient to be observed kinetically. We have characterized the structure and dynamics of the acid-denatured state of protein G by using a F30H mutant of G(B1) which is on the margin of stability. At 5 degrees C, F30H-G(B1) is greater than 95% folded at pH 7.0 and is greater than 95% unfolded at pH 4.0. This range of stability is useful because the denatured state can be examined under relatively mild conditions which are optimal for folding G(B1). We have assigned almost all backbone (15)N, H(N), and H(alpha) resonances in the acid-denatured state. Chemical shift, coupling constant, and NOE data indicate that the denatured state has considerably more residual structure when studied under these mild conditions than in the presence of chemical denaturants. The acid-denatured state populates nativelike conformations with both alpha-helical and beta-hairpin characteristics. To our knowledge, this is the first example of a denatured state with NOE and coupling constant evidence for beta-hairpin character. A number of non-native turn structures are also detected, particularly in the region corresponding to the beta1-beta2 hairpin of the folded state. Steady-state ?(1)H-(15)N? NOE results demonstrate restricted backbone flexibility in more structured regions of the denatured protein. Overall, our studies suggest that regions of the helix, the beta3-beta4 hairpin, and the beta1-beta2 turn may serve as potential initiation sites for folding of G(B). Furthermore, residual structure in acid-denatured F30H-G(B1) is more extensive than in peptide fragments corresponding to the beta1-beta2, alpha-helix, and beta3-beta4 regions, suggesting additional medium-to-long-range interactions in the full-length polypeptide chain.  相似文献   

13.
Two cyclic peptides with a thioether bond have been synthesised corresponding to the 9-22 (9LKMADPNRFRGKDL(22)) sequence of glycoprotein D (gD-1) of Herpes simplex virus. The role of the secondary structure in protein-specific monoclonal antibody recognition was investigated. The sequence selected for this study comprises a strongly antigenic site adopting a beta-turn at residues 14Pro-(15)Asn. Thioether bond was formed between the free thiol group of cysteine or homocysteine inserted in position 11 and the chloroacetylated side chain of lysine in position 18. We report here the preparation of cyclic peptides containing Cys or Hcy in position 11, differing only in one methylene group. The linear precursor peptides were synthesised by Boc/Bzl strategy on MBHA resin, and the cyclisation was carried out in alkaline solution. The secondary structure of the peptides was studied by CD, FT-IR and NMR spectroscopy. The CD and FT-IR data have revealed fundamental changes in the solution conformation of the two compounds. The CH(2) group difference significantly resulted in the altered turn structure at the 12Ala and 13Asp as identified by NMR spectroscopy. The antibody binding properties of the cyclopeptides studied by gD-specific monoclonal antibody (A16) in direct and competition enzyme-linked immunosorbent assay (ELISA) were also not the same. We found that peptide LK[HcyADPNRFK]GKDL exhibited higher affinity to Mab A16 than peptide LK[CADPNRFK]GKDL, however, their reactivity was significantly lower compared to the linear ones. Our results clearly show the importance of secondary structure in an antibody binding and demonstrate that even a slight modification of the primary structure dramatically could influence the immune recognition of the synthetic antigens.  相似文献   

14.
The alpha-subunit of the nicotinic acetylcholine receptor (alphaAChR) contains a binding site for alpha-bungarotoxin (alpha-BTX), a snake-venom-derived alpha-neurotoxin. Previous studies have established that the segment comprising residues 173-204 of alphaAChR contains the major determinant interacting with the toxin, but the precise boundaries of this determinant have not been clearly defined to date. In this study, we applied NMR dynamic filtering to determine the exact sequence constituting the major alphaAChR determinant interacting with alpha-BTX. Two overlapping synthetic peptides corresponding to segments 179-200 and 182-202 of the alphaAChR were complexed with alpha-BTX. HOHAHA and ROESY spectra of these complexes acquired with long mixing times highlight the residues of the peptide that do not interact with the toxin and retain considerable mobility upon binding to alpha-BTX. These results, together with changes in the chemical shifts of the peptide protons upon complex formation, suggest that residues 184-200 form the contact region. At pH 4, the molecular mass of the complex determined by dynamic light scattering (DLS) was found to be 11.2 kDa, in excellent agreement with the expected molecular mass of a 1:1 complex, while at pH >5 the DLS measurement of 20 kDa molecular mass indicated dimerization of the complex. These results were supported by T(2) measurements. Complete resonance assignment of the 11.2 kDa complex of alpha-BTX bound to the alphaAChR peptide comprising residues 182-202 was obtained at pH 4 using homonuclear 2D NMR spectra measured at 800 MHz. The secondary structures of both alpha-BTX and the bound alphaAChR peptide were determined using 2D (1)H NMR experiments. The peptide folds into a beta-hairpin conformation, in which residues (R)H186-(R)V188 and (R)Y198-(R)D200 form the two beta-strands. Residues (R)Y189-(R)T191 form an intermolecular beta-sheet with residues (B)K38-(B)V40 of the second finger of alpha-BTX. These results accurately pinpoint the alpha-BTX-binding site on the alphaAChR and pave the way to structure determination of this important alphaAChR determinant involved in binding acetylcholine and cholinergic agonists and antagonists.  相似文献   

15.
The objective of this work is to study the conformation of cyclic peptide (1), cyclo (1, 12) Pen1-Gly2-Val3-Asp4-Val5-Asp6-Gln7-+ ++Asp8-Gly9-Glu10-Thr11-Cys12, in the presence and absence of calcium. Cyclic peptide 1 is derived from the divalent cation binding sequence of the alpha-subunit of LFA-1. This peptide has been shown to inhibit ICAM-1-LFA-1 mediated T-cell adhesion. In order to understand the structural requirements for this biologically active peptide, its solution structure was studied by nuclear magnetic resonance (NMR), circular dichroism (CD) and molecular dynamics simulations. This cyclic peptide exhibits two types of possible conformations in solution. Structure I is a loop-turn-loop type of structure, which is suitable to bind cations such as EF hand proteins. Structure II is a more extended structure with beta-hairpin bend at Asp4-Val5-Asp6-Gln7. There is evidence that alterations in the conformation of LFA-1 upon binding to divalent cations cause LFA-1 to bind to ICAM-1. To understand this mechanism, the cation-binding properties of the peptide were studied by CD and NMR. CD studies indicated that the peptide binds to calcium and forms a 1 : 1 (peptide: calcium) complex at low calcium concentrations and multiple types of complexes at higher cation concentrations. NMR studies indicated that the conformation of the peptide is not significantly altered upon binding to calcium. The peptide can inhibit T-cell adhesion by directly binding to ICAM-1 or by disrupting the interaction of the alpha and beta-subunits of LFA-1 protein. This study will help us to understand the mechanism(s) of action of this peptide and will improve our ability to design a better inhibitor of T-cell adhesion.  相似文献   

16.
The thermal unfolding of a series of 6-, 10-, and 14-mer cyclic beta-hairpin peptides was studied to gain insight into the mechanism of formation of this important secondary structure. The thermodynamics of the transition were characterized using temperature dependent Fourier transform infrared spectroscopy. Thermodynamic data were analyzed using a two-state model which indicates increasing cooperativity along the series. The relaxation kinetics of the peptides in response to a laser induced temperature jump were probed using time-resolved infrared spectroscopy. Single exponential relaxation kinetics were observed and fit with a two-state model. The folding rate determined for these cyclic peptides is accelerated by some two orders of magnitude over the rate of a linear peptide that forms a beta-hairpin. This observation supports the argument that the rate limiting step in the linear system is either stabilization of compact collapsed structures or rearrangement of collapsed structures over a barrier to achieve the native interstrand registry. Small activation energies for folding of these peptides obtained from an Arrhenius analysis of the rates imply a primarily entropic barrier, hence an organized transition state having specific stabilizing interactions.  相似文献   

17.
Detailed investigations of a serum peptide (less than Glu1-Ala2-Lys3-Ser4-Gln5-Gly6-Gly7-Ser8-++ +Asn9) were carried out by 1H and 13C NMR spectroscopy to elucidate the structure of the complex formed with Zn(II), thymulin, which has been found to be active in vivo. These experiments were performed in dimethyl sulfoxide-d6 solution at different metal:peptide ratios. The results suggest the following conclusions. (i) The Zn(II) complexation corresponds to a fast exchange on the NMR time scale. (ii) The evolution of 1H and 13C NMR chemical shifts indicates the existence of two types of complexes: a 1:2 species associating two peptide molecules and one Zn(II) ion and a complex with 1:1 stoichiometry. The former is predominant for metal:peptide ratios below unity. (iii) In the 1:2 complex, Zn(II) is coordinated by the Ser4-O gamma H and Asn9-CO2- sites, while in the 1:1 complex, Ser8-O gamma H is the third ligand to the Zn(II) ion. The results are compared with those for the [Ala4] and [Ala8] analogues, and those for the complexes of thymulin with other metal ions (Cu2+ and Al3+) in terms of its biological activity. These comparative studies suggested that the 1:1 complex is the only conformation recognized by the antibodies.  相似文献   

18.
A 22-residue synthetic peptide encompassing the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase was studied by two-dimensional NMR and CD spectroscopy. In water the peptide does not form any regular structure; however, addition of the helix-inducing solvent trifluoroethanol (TFE) causes it to form an alpha-helical structure. The proton NMR spectra of this peptide in 25% and 40% TFE were assigned by double quantum-filtered J-correlated spectroscopy, total correlation spectroscopy, and nuclear Overhauser effect correlated spectroscopy spectra. In addition, the alpha-carbon chemical shifts were obtained from (1H,13C)-heteronuclear multiple quantum coherence spectra. The presence of numerous dNN(i, i + 1), d alpha N(i, i + 3), and d alpha beta(i, i + 3) NOE crosspeaks indicates that an alpha-helix can be formed from residues 3 to 20; this is further supported by the CD data. Upfield alpha-proton and downfield alpha-carbon shifts in this region of the peptide provide further support for the formation of an alpha-helix. The helix induced by TFE appears to be similar to that formed upon binding of the peptide to CaM.  相似文献   

19.
D Marion  F Guerlesquin 《Biochemistry》1992,31(35):8171-8179
Two-dimensional nuclear magnetic resonance spectroscopy was used to assign the proton resonances of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenbourough at 37 degrees C and pH = 5.9. Only a few side-chain protons were not identified because of degeneracy or overlap. The spin systems of the 79 amino acids were identified by DQF-COSY and HOHAHA spectra in H2O and D2O. Sequential assignments were obtained from NOESY connectivities between adjacent amide, C alpha H, and C beta H protons. From sequential NH(i)----NH(i + 1) and long-range C alpha H(i)----NH(i + 3) connectivities, four stretches of helices were identified (2----8, 34----46, 53----59, 67----77). Long-range NOE between residues in three different helices provide qualitative information on the tertiary structure, in agreement with the general folding pattern of cytochrome c. The heme protons, including the propionate groups, were assigned, and the identification of Met 57 as sixth heme ligand was established. The dynamical behavior of the ring protons of the six tyrosines was analyzed in detail in terms of steric hindrance. The NMR data for ferrocytochrome c553 are consistent with the X-ray structure for the homologous cytochrome from D. vulgaris Miyazaki. On the basis of the secondary structure element and of observed chemical shift due to the heme ring current, a structural alignment of eukaryotic and prokaryotic cytochromes c is proposed.  相似文献   

20.
Summary Essentially complete assignments have been obtained for the1H and protonated13C NMR spectra of the zinc finger peptide Xfin-31 in the presence and absence of zinc. The patterns observed for the1H and13C chemical shifts of the peptide in the presence of zinc, relative to the shifts in the absence of zinc, reflect the zinc-mediated folding of the unstructured peptide into a compact globular structure with distinct elements of secondary structure. Chemical shifts calculated from the 3D solution structure of the peptide in the presence of zinc and the observed shifts agree to within ca. 0.2 and 0.6 ppm for the backbone CaH and NH protons, respectively. In addition, homologous zinc finger proteins exhibit similar correlations between their1H chemical shifts and secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号