首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Granule size and size distribution, measured by laser diffraction, affected the flow behavior at 20 °C of (2.6% w/w) corn and cowpea starch dispersions heated for various time intervals above their gelatinization temperatures. The standard deviation of the granules' size described the transition of flow behavior from shear thickening in the early stages of gelatinization to shear thinning in the latter stages and influenced the critical shear rate, yc, for the onset of shear thickening in starch dispersions. The granules swelled to a maximum of about 3.5 times the raw starch granule mean diameter and 65% granule mass fraction. The consistency index of the dispersions increased with granule mean diameter. Modified waxy maize starch dispersions heated at 80 °C exhibited antithixotropic behavior at a shear rate of 200s−1; both dynamic frequency data and Cox-Merz plots revealed their gel-like behavior.  相似文献   

2.
Cassava starch was cross-linked with sodium trimetaphosphate (STMP) on a Cerealtec single-screw extruder at different extrusion temperatures and concentrations of STMP and NaOH. The effect of variables on functional properties of the products was analysed by the response–surface methodology. The degree of substitution (DS) was influenced by NaOH and phosphorus level, and increased when their concentration increased. Extrusion temperature affected water absorption, cold viscosity and gel characteristics. The introduction of phosphate groups by cross-linking, with maximum DS of 1.5×10−4, increased the gel strength, water absorption index, resistance to high temperature and shear, and decreased gel cohesiveness, starch clarity and water solubility index. The products had different DS and degree of gelatinization and thus can be applied in several kinds of foods.  相似文献   

3.
Potential roles of ultra high pressure (UHP) in starch granule reactivity and properties of acetylated starch were investigated. Corn starch was substituted with acetic anhydride at pressure range of 0.1–400 MPa for 15 min; also, conventional reaction (30 °C, 60 min) was conducted as reaction control. Native and acetylated corn starches were assessed with respect to degree of substitution (DS), X-ray diffraction pattern/relative crystallinity, starch solubility/swelling power, gelatinization, and pasting behavior. For the UHP-assisted acetylated starches, DS values increased along with increasing pressure levels from 200 to 400 MPa, and reaction at 400 MPa exhibited maximum reactivity (though lower than the DS value of the reaction control). Both UHP-assisted and conventional acetylation of starch likely occurred predominantly at amorphous regions within granules. Gelatinization and pasting properties of the UHP-assisted acetylated starches may be less influenced by UHP treatment in acetylation reaction, though restricted starch solubility/swelling were observed.  相似文献   

4.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

5.
Physicochemical properties of etherified maize starches   总被引:2,自引:0,他引:2  
The changes in starch properties due to etherification with allyl glycidyl ether (AGE) have been investigated. After etherification of three different starches (containing 0.9%, 27% and 70% amylose), no appreciable differences in granular appearance were observed, but the granule crystallinity of these starches was changed. Furthermore, the incorporation of AGE in the starch significantly affects its physicochemical properties: the gelatinization temperatures were decreased and the pasting properties were altered. Both the swelling power and the solubility index increased as the degree of substitution (DS) increased. The rheology behaviour of the droplets of swollen granules suspension was studied under shear flow conditions.  相似文献   

6.
Modification of starch by dicarboxylic acid anhydrides to starch esters, containing both hydrophilic and hydrophobic groups are known to improve its emulsification properties, and can also be used for encapsulation after hydrolysis. Reports on the effect of process conditions on the extent of modification of starches by using n-octenyl succinic anhydride (n-OSA) are not readily available. In the present study, the process of manufacturing of OSA starches from waxy corn and amaranth starch were studied with respect to the OSA/starch ratio, pH, temperature and time of the reaction. The effects of these parameters were evaluated on the basis of degree of substitution (DS). The concluding conditions for amaranth-OSA starches was a reaction time of 6 h at 3% OSA/starch ratio at 30 °C and pH 8.0 at 25% starch concentration. For waxy corn-OSA starch, all parameters were identical except for the reaction time of 24 h. The maximum DS achieved for both the starches was 0.02. Emulsification capacity and oil absorption capacity of the OSA-modified starches were more or less similar within the parameter chosen and also independent of starch type.  相似文献   

7.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B0) that is used to synthesize a polypeptide, which demonstrates fungicidal activity against clinically relevant pathogens. The scale-up of the pneumocandin fermentation requires an understanding of the rheological properties of the broth and the factors that influence flow behavior. A systematic approach for characterizing the rheological properties using a standard methodology is presented here. An appropriate rheometer was chosen and the effects of shear rate ramping, broth handling, creep and yield testing were examined. The fed-batch fermentation used a soluble production medium that allowed the relationship between biomass and rheological properties to be studied up to the 19-m3 scale. The morphologically heterogeneous broth demonstrated time-dependent shear thinning behavior with thixotropy and a yield stress. The flow curves were described by the power law model, with flow behavior of 0.35-0.4 and consistency index up to 10 Pa.sn. The use of a cup and bob rheometer was preferable to alternative techniques, including turbine and spindle systems defined by Mitschka's technique. The consistency index and flow behavior were shown to have a non-linear relationship with biomass concentrations up to 140 g/L. The consistency index continually increased with biomass during the fermentation, while the flow behavior initially decreased rapidly and then remained at low values for the remainder of the batch cultivation. The consistency index and yield stress were influenced by temperature, osmotic pressure, and pH, while the flow behavior remained independent of these factors.  相似文献   

8.
Ultrasound effect on physical properties of corn starch   总被引:2,自引:0,他引:2  
High power ultrasound (HPU) represents a non-thermal processing method that has been rapidly researched and used in the last 10 years. The application of power ultrasound offers the opportunity to modify and improve some technologically important compounds which are often used in food products. One of them is starch. The aim of this research was to examine the effect of the high power ultrasound of 24 kHz frequency on rheological and some physical properties of corn starch. Various ultrasound treatments were used; an ultrasound probe set with different intensities (34, 55, 73 W cm−2) and treatment times (15 and 30 min) and ultrasound bath of 2 W cm−2 intensity and treatment times (15 and 30 min). Rheological parameters, turbidity and swelling power of corn starch suspensions were determined for native and ultrasonically treated corn starch suspensions. Differential scanning calorimetry was used in order to examine the pasting properties of corn starch. The results have shown that the ultrasound treatment of corn starch distorts the crystalline region in starch granules. The results of differential scanning calorimetry measurements have shown a decrease in enthalpy of gelatinization. A significant decrease in consistency coefficient (k) has also been observed. The consistency coefficient decreases stepwise jointly with the increasing ultrasound power. The increase in the swelling power is associated with water absorption capacity and corn starch granules solubility, respectively.  相似文献   

9.
Using small-angle X-ray scattering, the behaviour of corn and potato starches during gelatinization, swelling, and rétrogradation was investigated. The scattering patterns were analysed on the basis of the fractal concept. The main scattering source from low moisture starches could be interpreted as a ‘surface fractal’ obeying a power law with an exponent of ca —4. When the starch swelled, the surface fractal characteristic was recognised only at very low angles, and on heating it disappeared at ca 80 °C. For gelatinised starches, the whole scattering pattern obeyed the power law with the power around -2.0. This result suggests that the physical arrangement of gelatinised starch molecules is a ‘mass fractal’, i.e. a self-similar structure, in nature. Further, it was found that the scattering of the retrograded starch showed a shoulder like peak superimposed the background scattering representing the mass fractal. The corresponding Bragg spacing was estimated to be 31˜15nm.  相似文献   

10.
Acetylated corn starch (ACS) was synthesized by the reaction of native corn starch (NCS) with acetic anhydride (AA) in an aqueous medium in the presence of sodium hydroxide as a catalyst. The factors that could affect the degree of substitution (DS) and reaction efficiency (RE) of corn starch were investigated which included the reaction temperature and time, the mass ratio of AA to starch, the ratio of the water volume to starch mass and pH. The optimal DS of 0.071 and RE of 67.05% was obtained. FTIR spectrometry showed new bands at 1733, 1375 and 1252 cm(-1). The SEM of the ACS indicated some cavities on the granules which fused together, compared with NCS. Wide angle X-ray diffraction revealed that ACS had a similar profile as NCS (A type). However, the intensity of peaks were diminished. DSC thermograms exhibited that ACS had some lower gelatinization temperatures and enthalpies than NCS. The functional properties of ACS such as the swelling power, solubility, water absorption, clarity, freeze-thaw stability, retrogradation and viscosity were also studied. The results suggest that the ACS has much better functional properties than the NCS, and could be expected to have wide applications especially in food industry.  相似文献   

11.
Native corn starch was hydrolyzed with 0.36% HCl in methanol at 25 and 45 °C for periods of time up to 240 h. The action of acid penetration and hydrolysis was investigated by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), high-performance anion-exchange chromatography (HPAEC) and high-performance size-exclusion chromatography (HPSEC) equipped with viscometry, right-angle laser light scattering (RALLS) and refractive index (RI) detectors. Corn starch hydrolyzed at 45 °C for 240 h showed strong intensity of APTS (8-amino-1,3,6-pyrenetrisulfonic acid) fluorescence and sharp growth ring structure. Exocorrosion over the surface of corn starch was only observed on the corn starch hydrolyzed at 25 °C for 240 h and observed on all corn starch hydrolyzed at 45 °C. The Mw and Rh of acid-hydrolyzed corn starch decreased with increasing the degree of hydrolysis. The acid hydrolysis rate in methanol of corn starch was mainly dependent on the temperature, which dominated the penetration efficiency of acid.  相似文献   

12.
Yam (Dioscorea esculenta) starch was modified by carboxymethylation. The effect of reaction parameters, amount of sodium hydroxide (NaOH), amount of sodium monochloroacetate (SMCA), and reaction time on the degree of substitution (DS) of carboxymethyl yam starch (CMS), was studied using the Box–Behnken experimental design. Physicochemical and potency to be a tablet disintegrant of CMS were evaluated. CMS with DS in the range of 0.08–0.19 were obtained. The results from regression analysis indicated that the most important factor in controlling DS was the amount of NaOH followed by SMCA content and reaction time. However, high concentration of NaOH and SMCA lowered the DS. The optimal conditions to achieve the highest DS (0.19) were found to be at molar ratios of NaOH and SMCA to anhydroglucose unit of 1.80 and 2.35, respectively, and with the reaction time of 4.8 h. The swelling power and viscosity of CMS increased with an increase in the degree of modification. CMS showed satisfying tablet disintegrant properties. The tablets containing 1.0–4.0 % CMS disintegrated faster than 5 min. Hence carboxymethyl yam starch can be used as an excellent tablet disintegrant in low concentration.  相似文献   

13.
Cross-linked waxy maize (CWM) starch dispersions (STDs) of concentration 50 g kg−1 were heated in sucrose solutions containing 0–600 g kg−1 (g sucrose/kg dispersion) at 85 °C at low shear and in intermittently agitated cans at 110 °C. The STDs heated in 0–300 g kg−1 sucrose exhibited antithixotropic behavior, while those heated in 400–600 g kg−1 sucrose exhibited thixotropic behavior. The mean starch granule diameter of the starch dispersions did not show strong dependence on sucrose concentration. The dispersions, especially those with high sucrose concentrations and heated at 110 °C, exhibited G′ versus frequency (ω) profiles of gels. The STDs exhibited first normal stress differences that increased in magnitude with the concentration of sucrose. Values of the first normal stress coefficient of canned dispersions calculated from dynamic rheological data plotted against ω and experimental values plotted against shear rate of some of the STDs overlapped.  相似文献   

14.
为开发适用于工业生产的新型酶制剂,以实验室自主构建的基因工程菌所产的新型海洋耐高温酸性α-淀粉酶为液化酶,以玉米淀粉液化后的DE值为指标,研究影响玉米淀粉的液化的因素,确定该酶水解玉米淀粉的最佳工艺条件。新型海洋耐高温酸性α-淀粉酶最佳的工艺条件为温度85℃、时间90 min、粉浆浓度250 g/L、酶用量32 U/g淀粉。  相似文献   

15.
Starch is a highly hydrophilic biomaterial with weak mechanical properties rendering it useless for commercial applications. A fully 'green' water based process is presented to crosslink corn (cereal) and potato (tuber) starch to enhance mechanical properties as well as lower hydrophilicity. In addition, malonic acid, a green, plant based water soluble and relatively inexpensive polycarboxylic acid, was used as the crosslinker. The reactivity of potato starch toward esterification and crosslinking was found to be higher than that of corn starch owing to the inherent differences in the granule morphology and internal structure of the two starches. It was observed that potato starch granules had a higher degree of substitution (DS) of 0.19 than corn starch granules (DS=0.1) under similar reaction conditions. Chemical, thermal and mechanical test results confirmed the crosslinking as well as reduced moisture sensitivity.  相似文献   

16.
The effects of plantain starch obtained from the unripe fruit of the plantMusa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 23 factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD>C≫N, on BFI was C≫RD>N and on DT was N>C>RD. The ranking for the interaction effects on TS and DT was N-C≫N-RD>C-RD, while that on BFI was N-C≫C-RD>N-RD. Changing nature of starch from a “low” (plantain starch) to a “high” (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P<.001) higher than those between N and RD and between C and RD. There is therefore the need to carefully choose the nature (N) and concentration (C) of starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern. Published: October 22, 2005  相似文献   

17.
Cationic corn starch derivatives with a high degree of substitution are prepared in alkaline solution or in mixed media of organic solvent and water with different levels of the cationic reagent, 2,3-epoxypropyltrimethylammonium chloride. The starch cationization yield is investigated, and the results indicate that the degree of substitution (DS) of the samples depends on the reaction conditions and reaction media. The maximum DS values are up to 1.37 in 1,4-dioxane alkaline-aqueous solution. Meanwhile, the structures of the cationic starch derivatives are characterized by elemental analyses, FTIR spectroscopy, X-ray diffraction, and 13C NMR spectroscopy, as well as by SEM techniques.  相似文献   

18.
The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.  相似文献   

19.
Starch acetates and starch butyrates with degree of substitution (DS) in the range of 0.06–1.54 were prepared by a simple direct solvent-free organocatalytic methodology of starch acylation. The starch esters synthesized have important applications in the food and pharmaceutical industries, among others. The acylation methodology used involves a non-toxic biobased α-hydroxycarboxylic acid as catalyst, and proceeds with high efficiency in absence of solvents. The effect of reaction time on the advance of starch modification was studied as a simple way to control the level of substitution achieved, when all other reaction parameters were kept constant. Starch esters were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectroscopy qualitatively confirmed the esterification of starch by the appearance of bands which are associated with esters groups. Scanning electron microscopy showed that the granular structure of the polysaccharide was preserved upon acylation, although acylated granules had rougher surfaces; and wrinkles, grooves and deformed zones appeared in some granules at high DS. Thermogravimetric analysis showed a gradual reduction in the water content of acylated starches, as well as noticeable changes in their thermal properties at increasing DS. X-ray diffraction analysis showed that the acetylation treatment led to lower crystallinity at increasing DS, although characteristic corn starch A-type patterns could be identified even at the highest DS achieved (DS = 1.23). Specific bands and weight losses derived from FTIR and TGA data could be very well correlated with the substitution degree achieved in acetylated starches at DS lower/equal than 0.6. The organocatalytic methodology described for the synthesis of starch acetates and butyrates has the potential to be easily extended to the synthesis of other starch esters using a variety of anhydrides or carboxylic acids as acylating agents  相似文献   

20.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号