首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A review is presented of the recent developments in the metabolism andfunction of polyamines in plants. Polyamines appear to be involved in a widerange of plant processes so their exact role is not completely understood. Inthis review, the metabolic pathways involved in polyamine biosynthesis anddegradation are explained, along with the transport and conjugation of thesecompounds. The methodologies involved in the analysis of polyamine functionusing metabolic inhibitors and genetic and molecular approaches are described.The occurrence and distribution of polyamine-derived alkaloids are also dealtwith. The direction of future research in the study of plant polyamines isindicated.  相似文献   

2.
Recent developments in the metabolism and function of polyamines in plants is presented. Polyamines appear to be involved in a wide range of plant processes, however their exact role is not completely understood. In this review, the metabolic pathways involved in polyamine biosynthesis and degradation are explained, along with the transport and conjugation of these compounds. The studies involved in the understanding of function(s) of polyamines using metabolic inhibitors, as well as genetic and molecular approaches are described. Polyamine metabolism and profound changes in polyamine titres in response to infection by pathogens has been presented. Its role in adaptation of plants to stress is also presented. Molecular understanding of polyamines and their modulation in transgenics is also discussed. Further line of work in the understanding of the role of polyamines has also been focussed.  相似文献   

3.
Polyamines are small polycations that are well conserved in all the living organisms except Archae, Methanobacteriales and Halobacteriales. The most common polyamines are putrescine, spermidine and spermine, which exist in varying concentrations in different organisms. They are involved in a variety of cellular processes such as gene expression, cell growth, survival, stress response and proliferation. Therefore, diverse regulatory pathways are evolved to ensure strict regulation of polyamine concentration in the cells. Polyamine levels are kept under strict control by biosynthetic pathways as well as cellular uptake driven by specific transporters. Reverse genetic studies in microorganisms showed that deletion of the genes in polyamine metabolic pathways or depletion of polyamines have negative effects on cell survival and proliferation. The protein products of these genes are also used as drug targets against pathogenic protozoa. These altogether confirm the significant roles of polyamines in the cells. This mini-review focuses on the differential concentrations of polyamines and their cellular functions in different microorganisms. This will provide an insight about the diverse evolution of polyamine metabolism and function based on the physiology and the ecological context of the microorganisms.  相似文献   

4.
Numerous citations in the literature indicate that polyamines are intensively studied in plants. Polyamines are implicated in many functions of the plant cell. Excellent recent reviews cover much of this original research. This article is focused primarily on literature that relates research on the role of polyamines in apoptosis and programmed cell death in both plants and animals. Apoptosis and programmed cell death are considerably better studied in animal systems, and this review demonstrates that the role of polyamines in these processes in plant systems are remarkably congruent with what is known in animal systems. In addition, key recent research reports are reviewed that describe the functional analysis of key polyamine biosynthesis genes in plants in relation to responses to environmental stress signals. Molecular analysis is providing strong evidence for the polyamine biosynthetic pathways to play major roles in ameliorating plant responses to abiotic stresses.  相似文献   

5.
Polyamines are small positively charged molecules with a widespread presence in all living organisms. In plants they modulate several aspects of growth and differentiation, and they also participate in the response to abiotic stress. Here we review the molecular mechanisms involved in the regulation of polyamine biosynthesis, which is exerted at different levels including gene expression, protein synthesis, and formation of multienzyme complexes. The importance of polyamines both in development and in stress resistance is also subtended by the phenotype of loss-of-function mutants and of overexpressing lines affecting the different genes that encode polyamine metabolism enzymes.  相似文献   

6.
7.
Polyamines are small ubiquitous molecules that have been involved in nearly all developmental processes, including the stress response. Nevertheless, no direct evidence of a role of polyamines in the wound response has been described. We have studied the expression of genes involved in polyamine biosynthesis in response to mechanical injury. An increase in the expression of the arginine decarboxylase 2 (ADC2) gene in response to mechanical wounding and methyl jasmonate (JA) treatment in Arabidopsis was detected by using DNA microarray and RNA gel-blot analysis. No induction was observed for the ADC1 gene or other genes coding for spermidine and spermine synthases, suggesting that ADC2 is the only gene of polyamine biosynthesis involved in the wounding response mediated by JA. A transient increase in the level of free putrescine followed the increase in the mRNA level for ADC2. A decrease in the level of free spermine, coincident with the increase in putrescine after wounding, was also observed. Abscisic acid effected a strong induction on ADC2 expression and had no effect on ADC1 expression. Wound-induction of ADC2 mRNA was not prevented in the JA-insensitive coi1 mutant. The different pattern of expression of ADC2 gene in wild-type and coi1 mutant might be due to the dual regulation of ADC2 by abscisic acid and JA signaling pathways. This is the first direct evidence of a function of polyamines in the wound-response, and it opens a new aspect of polyamines in plant biology.  相似文献   

8.
9.
Wang JY 《Amino acids》2007,33(2):241-252
Summary. The mammalian intestinal epithelium is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through strict regulation of epithelial cell proliferation, growth arrest, and apoptosis. Polyamines are necessary for normal intestinal mucosal growth and decreasing cellular polyamines inhibits cell proliferation and disrupts epithelial integrity. An increasing body of evidence indicates that polyamines regulate intestinal epithelial cell renewal by virtue of their ability to modulate expression of various genes and that growth inhibition following polyamine depletion results primarily from the activation of growth-inhibiting genes rather than a simple decrease in expression of growth-promoting genes. In this review article, we will focus on changes in expression of growth-inhibiting genes following polyamine depletion and further analyze in some detail the mechanisms through which mRNA stability is regulated by RNA-binding proteins.  相似文献   

10.
Interactions of polyamines and nitrogen nutrition in plants   总被引:4,自引:0,他引:4  
Biogenic amines occupy an important position among the many nitrogenous plant compounds. Polyamines are part of the overall metabolism of nitrogenous compounds, yet they do not seem to function in the 'normal' nitrogen nutrition. Rather, these widespread polycations (e. g. putrescine, spermidine and spermine) are involved in the regulation of growth and stress, probably by binding to negatively charged macromolecules. In addition, some diamines and polyamines are metabolized to yield 'secondary 'metabolites such as nicotine and other alkaloids. Previous studies have indicated that the ratio of nitrate to ammonium nutrition affects polyamine biosynthesis and content in intact plants. Thus, an increase in putrescine accumulation was found under conditions of excess ammonium ions, relative to nitrate. Modifications of nitrogen sources in the culture medium of tobacco cell suspensions (depletion of ammonium nitrate, or potassium nitrate, or both) resulted in marked changes in the content of cellular free polyamines. Considerable changes in the content of specific polyamines were also found with exposure to specific inhibitors of polyamine biosynthesis (difluoromethyl ornithine, difluoromethyl arginine, cyclohexylamine, methylglyoxal-bis-guanylhydrazone). However, a combination of nitrogen depletion of the medium and some inhibitors resulted in a very marked over-production of spermidine and spermine. The significance of these findings is discussed in relation to the assumption that polyamines act as a metabolic buffer, and maintain cellular pH under conditions where ammonium assimilation produces an excess of protons.  相似文献   

11.
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.  相似文献   

12.
13.
Polyamines are ubiquitous polycationic compounds that mediate fundamental aspects of cell growth, differentiation, and cell death in eukaryotic and prokaryotic organisms. In plants, polyamines are implicated in a variety of growth and developmental processes, in addition to abiotic and biotic stress responses. In the last decade, mutant studies conducted predominantly in Arabidopsis thaliana revealed an obligatory requirement for polyamines in zygotic and somatic embryogenesis. Moreover, our appreciation for the intricate spatial and temporal regulation of intracellular polyamine levels has advanced considerably. The exact molecular mechanism(s) through which polyamines exert their physiological response remains somewhat enigmatic and likely serves as a major area for future research efforts. In the following review, we discuss recent advances in the plant polyamine field, which range from metabolism and mutant characterization to molecular genetics and potential mode(s) of polyamine action during growth and development in vitro and in vivo. This review will also focus on the specific role of polyamines during embryogenesis and organogenesis.  相似文献   

14.
Polyamines are essential organic cations with multiple cellular functions. Their synthesis is controlled by a feedback regulation whose main target is ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. In mammals, ODC has been shown to be inhibited and targeted for ubiquitin-independent degradation by ODC antizyme (AZ). The synthesis of mammalian AZ was reported to involve a polyamine-induced ribosomal frameshifting mechanism. High levels of polyamine therefore inhibit new synthesis of polyamines by inducing ODC degradation. We identified a previously unrecognized sequence in the genome of Saccharomyces cerevisiae encoding an orthologue of mammalian AZ. We show that synthesis of yeast AZ (Oaz1) involves polyamine-regulated frameshifting as well. Degradation of yeast ODC by the proteasome depends on Oaz1. Using this novel model system for polyamine regulation, we discovered another level of its control. Oaz1 itself is subject to ubiquitin-mediated proteolysis by the proteasome. Degradation of Oaz1, however, is inhibited by polyamines. We propose a model, in which polyamines inhibit their ODC-mediated biosynthesis by two mechanisms, the control of Oaz1 synthesis and inhibition of its degradation.  相似文献   

15.
Polyamine metabolism is intimately linked to the physiological state of the cell. Low polyamines levels promote growth cessation, while increased concentrations are often associated with rapid proliferation or cancer. Delicately balanced biosynthesis, catabolism, uptake and excretion are very important for maintaining the intracellular polyamine homeostasis, and deregulated polyamine metabolism is associated with imbalanced metabolic red/ox state. Although many cellular targets of polyamines have been described, the precise molecular mechanisms in these interactions are largely unknown. Polyamines are readily interconvertible which complicate studies on the functions of the individual polyamines. Thus, non-metabolizable polyamine analogues, like carbon-methylated analogues, are needed to circumvent that problem. This review focuses on methylated putrescine, spermidine and spermine analogues in which at least one hydrogen atom attached to polyamine carbon backbone has been replaced by a methyl group. These analogues allow the regulation of both metabolic and catabolic fates of the parent molecule. Substituting the natural polyamines with methylated analogue(s) offers means to study either the functions of an individual polyamine or the effects of altered polyamine metabolism on cell physiology. In general, gem-dimethylated analogues are considered to be non-metabolizable by polyamine catabolizing enzymes spermidine/spermine-N 1-acetyltransferase and acetylpolyamine oxidase and they support short-term cellular proliferation in many experimental models. Monomethylation renders the analogues chiral, offering some advantage over gem-dimethylated analogues in the specific regulation of polyamine metabolism. Thus, methylated polyamine analogues are practical tools to meet existing biological challenges in solving the physiological functions of polyamines.  相似文献   

16.
N Ohsawa 《Human cell》1990,3(2):91-98
Polyamines are recognized as cell growth factors in relation to cell proliferation, differentiation, regeneration and malignant transformation. Polyamines play an important role in the growth of normal cells like vascular endothelial cells and also exert various effects on the proliferation and metastasis of malignant cells. The recent studies on the biosynthesis have clearly elucidated its mechanism at the gane levels, which reflects to the development of the inhibitors of the polyamine biosynthesis. One of the main purposes of the studies on the various polyamine synthesis inhibitors is for the development of new anti-cancer agents, based on the characteristics of the polyamine functions. The clinical effects of several inhibitors, however, have not been shown to be satisfactory and the reason is now the most important research subject in this field. The measurement of the polyamine contents in biological fluids including urine and blood has been shown to be useful as the tumor marker. The recent studies have indicated that the mechanism of increased secretion of urinary polyamines is due to the release from the degraded cancer cells. The results now stimulated the research which aims to elucidate the usefulness of the measurement of urinary polyamines as the parameters of the sensitivity to the anticancer drugs in patients with cancer.  相似文献   

17.
18.

Background

Polyamines are small polycationic molecules found ubiquitously in all organisms and function in a wide variety of biological processes. In the past decade, molecular and genetic studies using mutants and transgenic plants with an altered activity of enzymes involved in polyamine biosynthesis have contributed much to a better understanding of the biological functions of polyamines in plants.

Possible roles

Spermidine is essential for survival of Arabidopsis embryos. One of the reasons may lie in the fact that spermidine serves as a substrate for the lysine → hypusine post-translational modification of the eukaryotic translation initiation factor 5A, which is essential in all eukaryotic cells. Spermine is not essential but plays a role in stress responses, probably through the modulation of cation channel activities, and as a source of hydrogen peroxide during pathogen infection. Thermospermine, an isomer of spermine, is involved in stem elongation, possibly by acting on the regulation of upstream open reading frame-mediated translation.

Conclusions

The mechanisms of action of polyamines differ greatly from those of plant hormones. There remain numerous unanswered questions regarding polyamines in plants, such as transport systems and polyamine-responsive genes. Further studies on the action of polyamines will undoubtedly provide a new understanding of plant growth regulation and stress responses.  相似文献   

19.
Polyamines are essential metabolites found in all organisms. Intracellular polyamine levels are tightly maintained by biosynthesis, degradation, uptake and excretion processes that involve regulatory mechanisms – such as the antizyme inhibitory protein – that are conserved across the kingdoms of life, indicating that polyamine levels are critical to cell function. Nonetheless, the biochemical roles of polyamines and their involvement in numerous fundamental cellular processes including aging, cell cycle progression and growth only become apparent when polyamine homeostasis is perturbed. Thus, while polyamines are present in most cells and essential for cell growth, their biochemical functions are largely enigmatic. Studies in fungi have contributed to our basic understanding of polyamines, and might continue to bridge knowledge gaps regarding polyamine metabolism and cell function. Moreover, when considering the impact of fungi – directly or indirectly, for good or for ill – on human society, closing gaps in our understanding of polyamine functions in fungal physiology is an important goal in itself that might lead to the discovery of new targets for enhancing beneficial fungal interactions and diminishing those detrimental to crop and human health. To facilitate progress towards this prospect, here we appraise what is known about polyamine metabolism in fungi, how prevalent polyamines impact fungal physiology and metabolism, and how the levels of each polyamine are maintained in the fungal cell – thus pointing to how they might be perturbed.  相似文献   

20.
Involvement of polyamines in plant response to abiotic stress   总被引:21,自引:0,他引:21  
Environmental stresses are the major cause of crop loss worldwide. Polyamines are involved in plant stress responses. However, the precise role(s) of polyamine metabolism in these processes remain ill-defined. Transgenic approaches demonstrate that polyamines play essential roles in stress tolerance and open up the possibility to exploit this strategy to improve plant tolerance to multiple environmental stresses. The use of Arabidopsis as a model plant enables us to carry out global expression studies of the polyamine metabolic genes under different stress conditions, as well as genome-wide expression analyses of insertional-mutants and plants over-expressing these genes. These studies are essential to dissect the polyamine mechanism of action in order to design new strategies to increase plant survival in adverse environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号