首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain M18. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of Nacylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.  相似文献   

3.
Quorum sensing is a global gene-regulatory mechanism in bacteria that enables individual bacterial cells to communicate and coordinate their population behaviors. Quorum sensing is central to the pathogenesis of many bacterial pathogens including Pseudomonas aeruginosa and therefore has been exploited as a target for developing novel antipathogenic drugs. In P. aeruginosa , three intertwined quorum-sensing systems, las, rhl , and the 2-alkyl-4(1 H )-quinolone system, which includes the Pseudomonas quinolone signal (PQS), control virulence factor production, and pathogenesis processes. Previously, we obtained a mutant with diminished expression of the phzA1B1C1D1E1F1G1 operon that is involved in the production of virulence factor phenazine compounds. In this study, the mutant was further characterized, and evidence indicating that the disrupted gene PA1196 in the mutant is a potential regulator of the rhl and PQS systems is presented. PA1196 positively controls the expression of the rhl and PQS systems and affects bacterial motility and multiple virulence factor expression via the quorum-sensing systems. This adds an important new player in the complex quorum-sensing network in P. aeruginosa .  相似文献   

4.
A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the LasR protein, consistent with the hypothesis that RsaL and LasR could be in binding competition on this promoter. This is the first direct demonstration that RsaL acts as a QS negative regulator by binding to the lasI promoter.  相似文献   

5.
6.
7.
8.
Two interlinked quorum sensing circuits, las and rhl, which control pathogenesis of Pseudomonas aeruginosa are further modulated by numerous regulators, including VqsR (virulence and quorum sensing regulator). High-density oligonucleotide microarrays were used to compare the global expression profile of a wild-type and VqsR mutant in ABC minimal medium. The expression of a large group of metabolic genes, ECF sigma factors as well as of many quorum-sensing genes previously not assigned to VqsR-regulon was found to be affected by the disruption of vqsR.  相似文献   

9.
10.
11.
The biofilm formation of Pseudomonas aeruginosa, an opportunistic human pathogen, is developed by cell-to-cell signaling, so-called quorum sensing (QS). To control the biofilm formation, we designed and synthesized new QS inhibitors of P. aeruginosa based on the structure of the previously known QS inhibitor, furanone. Newly synthesized compounds were a series of analogs of (5-oxo-2,5-dihydrofuran-3-yl)methyl alkanoate, and the structures of all six synthesized compounds was confirmed by NMR and GC/MS analyses. These new QS inhibitor candidates could remarkably inhibit both Pseudomonas QS signaling and biofilm formation, which were assayed by using the recombinant reporter system and flow cell confocal microscopy. The degree of QS inhibition by these new inhibitors varied from 20% to 90%. For the profound understanding about inhibition mechanism, we tried to estimate the binding energy between QS receptor, LasR, and our inhibitors from the in silico modeling system. The predicted binding pattern from the modeling system and our experimental data about QS inhibition were in good agreement. From these results, we suggest a new approach to develop the QS inhibitors and biofilm control agents based on structural modeling.  相似文献   

12.
13.
14.
15.
16.
17.
群体感应是细菌根据细胞密度变化调控基因表达的一种调节机制。铜绿假单胞菌中QS系统由lasI和rhlI合成的信号分子3OC12-HSL和C4-HSL以及各自的受体蛋白LasR、RhlR组成,它们以级联方式调控多个基因表达。【目的】研究细菌群体感应(QS)对聚羟基脂肪酸酯合成的调控。【方法】利用铜绿假单胞菌PAO1及其QS突变株为材料通过气相色谱、荧光定量PCR在生理和分子水平上研究QS对聚羟基脂肪酸酯合成的调控。【结果】QS信号分子合成抑制剂阿奇霉素处理铜绿假单胞菌PAO1和QS突变株导致胞内PHA积累量显著减少;铜绿假单胞菌PAO1中C4-HSL合成酶基因rhlI缺失突变株PAO210胞内PHA积累量与野生型无差别;而3OC12-HSL合成酶基因lasI缺失突变株PAO55、3OC12-HSL受体合成酶基因lasR缺失突变株PAO56以及lasI/lasR双缺失突变株PAO57胞内PHA含量与野生型相比明显减少;lasI和lasR的突变株体内PHA合成酶基因phaC1的表达量显著降低,信号分子3OC12-HSL回补实验使phaC1的表达量可恢复到野生株水平,但只可部分恢复lasI缺失导致的胞内PHA合成。【结论】由此推测,铜绿假单胞菌群体感应系统中lasI/lasR系统参与胞内聚羟基脂肪酸酯合成的调控。  相似文献   

18.
In Pseudomonas aeruginosa, the GacS/GacA two-component system positively controls the quorum-sensing machinery and the expression of extracellular products via two small regulatory RNAs, RsmY and RsmZ. An rsmY rsmZ double mutant and a gacA mutant were similarly impaired in the synthesis of the quorum-sensing signal N-butanoyl-homoserine lactone, the disulfide bond-forming enzyme DsbA, and the exoproducts hydrogen cyanide, pyocyanin, elastase, chitinase (ChiC), and chitin-binding protein (CbpD). Both mutants showed increased swarming ability, azurin release, and early biofilm development.  相似文献   

19.
20.
In Pseudomonas aeruginosa , synthesis of the quorum-sensing signal molecules N -butanoyl- L -homoserine lactone (BHL) and N -hexanoyl- L -homoserine lactone (HHL) requires the LuxI homologue RhlI(VsmI). By using thin-layer chromatography in conjunction with high-performance liquid chromatography (HPLC) and mass spectrometry, we show that purified RhlI can catalyse the biosynthesis of BHL and HHL using either S -adenosylmethionine (SAM) or homoserine lactone (HSL) but not homoserine as the source of the homoserine lactone moiety. As we were unable to detect homoserine lactone in cytoplasmic extracts of Escherichia coli , we conclude that SAM is the natural substrate for RhlI-directed N -acylhomoserine lactone (AHL) biosynthesis. The N -acyl chain of BHL and HHL can be supplied by the appropriately charged coenzyme A derivative (either n -butanoyl-CoA or n -hexanoyl-CoA). The specificity of RhlI for charged CoA derivatives is demonstrated as RhlI was unable to generate AHLs detectable in our bioassays from acetyl-CoA, malonyl-CoA, n -octanoyl-CoA, n -decanoyl-CoA, DL-β-hydroxybutanoyl-CoA or crotonoyl-CoA. RhlI was also unable to use N -acetyl- S -3-oxobutanoylcysteamine, a chemical mimic for 3-oxobutanoyl-CoA. Furthermore, the RhlI-catalysed synthesis of BHL and HHL was most efficiently driven when NADPH was included in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号