首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
昆虫杆状病毒应用于哺乳动物基因治疗的研究进展   总被引:5,自引:0,他引:5  
杆状病毒是一类宿主特异性的昆虫病毒。昆虫杆状病毒表达系统是一个高效的真核表达系统,被广泛用于在昆虫细胞或昆虫幼虫中生产外源蛋白质。杆状病毒不能感染哺乳动物,却可以进入不同物种和组织来源的多种哺乳动物细胞,并在合适的哺乳动物启动子控制下表达外源基因。杆状病毒在哺乳动物细胞中不能复制,对细胞没有毒性,加上杆状病毒本身具有基因组大、可操作性好等优点,作为哺乳动物基因治疗的载体,将治疗基因传递给哺乳动物细胞已受到了广泛关注。在此就杆状病毒作为基因治疗载体的最新研究进展进行了阐述并探讨其发展趋势。  相似文献   

2.
杆状病毒表达系统是以杆状病毒为外源基因载体,昆虫细胞或活体昆虫为受体的真核表达系统。相对于其他表达系统,杆状病毒表达系统具有特殊的优势:杆状病毒基因组作为表达载体可以容纳更多外源基因;杆状病毒极晚期启动子能有效调控外源蛋白的表达;昆虫细胞作为受体能够对外源蛋白进行加工修饰;杆状病毒通常只感染节肢动物,不会对人畜构成危害。因此,该系统越来越受到人们的重视,并已应用于亚单位疫苗的研发与生产,特别其对于构建病毒样颗粒,即由一种或多种病毒结构蛋白自行装配而成且不含病毒基因组的蛋白颗粒,具有不可比拟的优势。对此做详细评述并展望病毒样颗粒疫苗的发展趋势。  相似文献   

3.
昆虫杆状病毒表达载体系统已广泛应用于表达重组蛋白。近年来研究显示,含有哺乳动物细胞启动子元件的重组杆状病毒可有效地转导多种哺乳动物原代和传代细胞。借助于杆状病毒载体,已成功实现了外源基因在哺乳动物细胞内的瞬时或稳定表达;而在体内,杆状病毒可被血清中的补体成份所灭活,从而抑制了转导效率,但是通过对杆状病毒进行修饰(如伪型杆状病毒),可以抵抗补体的灭活作用。研究人员对杆状病毒转导机制进行了探索,但是至今尚未完全弄清。杆状病毒基因转移系统最大特点是,杆状病毒能在昆虫细胞内大量繁殖,而不能在哺乳动物细胞内复制,因而具有很高的生物安全性;同时,此系统还具有操作简便、插入外源基因容量大等优点,使得杆状病毒作为哺乳动物细胞的基因传递载体,具有广泛的应用前景。  相似文献   

4.
李俪  王鑫  尹隽  钟江 《生物工程学报》2009,25(10):1558-1563
为了提高昆虫杆状病毒在哺乳动物细胞中转导基因的效率,构建了重组杆状病毒AcRed-tat和AcRed。两者都能在哺乳动物细胞内表达红色荧光蛋白作为报告基因。同时,AcRed-tat带有HIV-1Tat转导肽、病毒主要衣壳蛋白基因vp39及增强型绿色荧光蛋白(egfp)三者的融合基因,并由杆状病毒多角体启动子表达,能够在昆虫细胞中表达该Tat融合蛋白,并掺入子代病毒粒子。而AcRed作为相应的对照病毒,带有多角体启动子表达vp39和egfp的融合基因。2株病毒分别转导哺乳动物细胞后,利用流式细胞仪检测报告基因的表达水平,发现在CHO和Vero细胞中AcRed-Tat介导的报告基因表达水平明显高于AcRed,而在HEK293细胞中2株病毒介导的报告基因表达水平差异不显著。结果表明Tat转导肽可以提高杆状病毒对一部分哺乳动物细胞的转导效率,为改进杆状病毒-哺乳动物细胞转导载体提供了新的思路。  相似文献   

5.
6.
无血清培养昆虫细胞(BTI-Tn-5B1-4)的适应过程   总被引:6,自引:0,他引:6  
戴琥  赵佼  谭文松  杨曜中   《生物工程学报》2000,16(2):232-234
昆虫细胞培养是近年来迅速发展起来的动物细胞培养工程中的一个新领域。人们可以利用杆状病毒在昆虫细胞内的感染、复制,来大量生产昆虫病毒作为生物杀虫剂[1]。而昆虫细胞杆状病毒表达载体系统的建立,则可通过昆虫细胞的体外培养大量表达病毒携带的外源基因。实践证明,这…  相似文献   

7.
将汉滩病毒囊膜糖蛋白G1与核蛋白(NP)部分片段以不同方式拼 接,构建G1S0.7或S0.7G1嵌合基因,分别插入杆状病毒表达载体pFBD,转化DH10Bac致敏菌, 获得含有嵌合基因的重组穿梭质粒Bacmid,用其转染Sf9细胞,快速筛选出含有G1S0.7或S0.7 G1嵌合 基因的重组杆状病毒,在昆虫细胞中表达外源融合蛋白.利用间接免疫荧光、ELISA和免疫 印迹对表达产物进行检测.结果表明,含G1S0.7嵌合基因之重组杆状病毒可在昆虫细胞中表 达出融合蛋白,该蛋白可被抗汉滩病毒核蛋白及糖蛋白G1特异性单抗所识别,其分子量约97 kD;含S0.7G1嵌合基因之重组杆状病毒在昆虫细胞中表达的融合蛋白,只能被抗汉滩病毒核 蛋白特异性单抗所识别,其分子量约43kD.上述结果提示,G1S0.7嵌合基因可能在昆虫细胞 中表达出完整的具有生物学活性的融合蛋白,S0.7G1嵌和基因的昆虫细胞表达产物不完整 ,且生物学活性不如G1S0.7嵌合基因的表达产物.  相似文献   

8.
随着杆状病毒载体和筛选方法的不断改进,通过Bac-to-Bac方法可以使杆状病毒最大重组率达到100%,缩短了构建重组载体的时间,极大提高了工作效率。另外,研究者开发了一些新的宿主域扩大的昆虫杆状病毒载体,能够在家蚕或蛹内进行高水平表达重组蛋白。昆虫杆状病毒表达系统具有完备的翻译后加工修饰功能和高效表达外源蛋白的能力等特点,是一种非常理想的真核表达系统。利用该表达系统现已成功表达了约千种外源蛋白。以重组杆状病毒为载体的昆虫表达系统、外源基因在该表达系统中的表达情况及在农业领域中的应用进行了介绍。  相似文献   

9.
杆状病毒用于哺乳动物细胞快速高效表达外源基因的研究   总被引:2,自引:2,他引:2  
现已发现杆状病毒可进入某些培养的哺乳动物细胞,这提示可将杆状病毒作为一种对哺乳动物细胞的新型基因转移载体。对杆状病毒转移载体的改造及对哺乳动物细胞的基因转移方式进行了进一步的研究。以绿色荧光蛋白基因为报告基因,利用Bac-to-Bac系统构建了分别含有正向和反向CMV启动子表达盒的两种重组杆状病毒。可观察到CMV启动子在Sf9细胞中可启动报告基因的表达,但表达效率较低。用重组杆状病毒感染后Sf9细胞的培养上清直接与HepG2细胞作用,以流式细胞术检测基因转移效率及荧光表达强度,发现这两种病毒在相同的感染复数下对HepG2细胞具有相似的基因转移及表达效率。同时,利用流式细胞术进一步研究了直接使用重组杆状病毒感染4d后Sf9细胞的培养上清对哺乳动物细胞进行基因转移的方法。通过对HepG2细胞的实验结果显示,将带毒Sf9细胞培养上清(1.2×107PFU/mL)用哺乳动物细胞培养基1倍稀释后,37℃下孵育靶细胞12h(moi=50),可达到较高的基因转移及表达效率,同时不会对细胞造成明显损伤。将重组杆状病毒与脂质体和逆转录病毒这两种系统对HepG2及CV1细胞的基因转移效率进行了比较,结果发现在同样未经浓缩等特殊处理的条件下重组杆状病毒对这两种细胞的基因转移效率是最高的。因此可以认为,经过适当改造后的Bac-to-Bac重组杆状病毒系统可作为一种对哺乳动物细胞简便高效的基因转移表达载体。  相似文献   

10.
罗雯  徐志凯等 《Virologica Sinica》2002,17(3):226-229,F003
将汉滩病毒囊膜糖蛋白G1与核蛋白 (NP)部分片段以不同方式拼接 ,构建G1S0 .7或S0 .7G1嵌合基因 ,分别插入杆状病毒表达载体 pFBD ,转化DH10Bac致敏菌 ,获得含有嵌合基因的重组穿梭质粒Bacmid ,用其转染Sf9细胞 ,快速筛选出含有G1S0 .7或S0 .7G1嵌合基因的重组杆状病毒 ,在昆虫细胞中表达外源融合蛋白。利用间接免疫荧光、ELISA和免疫印迹对表达产物进行检测。结果表明 ,含G1S0 .7嵌合基因之重组杆状病毒可在昆虫细胞中表达出融合蛋白 ,该蛋白可被抗汉滩病毒核蛋白及糖蛋白G1特异性单抗所识别 ,其分子量约 97kD ;含S0 .7G1嵌合基因之重组杆状病毒在昆虫细胞中表达的融合蛋白 ,只能被抗汉滩病毒核蛋白特异性单抗所识别 ,其分子量约 4 3kD。上述结果提示 ,G1S0 .7嵌合基因可能在昆虫细胞中表达出完整的具有生物学活性的融合蛋白 ,S0 .7G1嵌和基因的昆虫细胞表达产物不完整 ,且生物学活性不如G1S0 .7嵌合基因的表达产物  相似文献   

11.
Baculovirus vector systems are extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which makes it possible to express multiple genes simultaneously within a single infected insect cell and to obtain multimeric proteins functionally similar to their natural analogs. Recombinant viruses with expression cassettes active in mammalian cells are used to deliver and express genes in mammalian cells in vitro and in vivo. Further improvement of the baculovirus expression system and its adaptation to specific target cells can open up a wide variety of applications. The review considers recent achievements in the use of modified baculoviruses to express recombinant proteins in eukaryotic cells, advantages and drawbacks of the baculovirus expression system, and ways to optimize the expression of recombinant proteins in both insect and mammalian cell lines.  相似文献   

12.
The baculovirus vector systems has been extensively used for the expression of foreign gene products in insect and mammalian cells. New advances increase the possibilities and applications of the baculovirus expression system, which has the capability to express multiple genes simultaneously within a single infected insect cells and to use recombinant virus with mammalian cell-active expression cassettes to permit expression of recombinant proteins in mammalian cells in vitro and in vivo. Future investigations of the baculovirus expression system designed for specific target cells, can open wide variety of applications. This review summarizes the recent achievements in applications the baculovirus vector systems and optimization recombinant protein expression in both insect and mammalian cell lines.  相似文献   

13.
The baculovirus-insect cell expression system is widely used to produce recombinant mammalian glycoproteins, but the glycosylated end products are rarely authentic. This is because insect cells are typically unable to produce glycoprotein glycans containing terminal sialic acid residues. In this study, we examined the influence of two mammalian glycosyltransferases on N-glycoprotein sialylation by the baculovirus-insect cell system. This was accomplished by using a novel baculovirus vector designed to express a mammalian alpha2,6-sialyltransferase early in infection and a new insect cell line stably transformed to constitutively express a mammalian beta1,4-galactosyltransferase. Various biochemical assays showed that a foreign glycoprotein was sialylated by this virus-host combination, but not by a control virus-host combination, which lacked the mammalian glycosyltransferase genes. Thus, this study demonstrates that the baculovirus-insect cell expression system can be metabolically engineered for N-glycoprotein sialylation by the addition of two mammalian glycosyltransferase genes.  相似文献   

14.
The outermost layers of animal viruses are usually composed of glycoproteins. They are responsible not only for the entrance of viruses into, and release from host cells but also for the initial interaction of a viral particle with immunological defense of the host. It is therefore not surprising that many laboratories devote a lot of effort to study viral glycoproteins at the molecular level. Very often such studies are possible only after the introduction of a glycoprotein gene into a heterologous system. Expression of glycoprotein genes is usually obtained in mammalian or insect cells. Expression in mammalian cells yields viral glycoproteins with glycan chains indistinguishable from the original counterparts in virion particles but the level of synthesis of glycoproteins is very low. Vaccinia virus is the most common vector for expression in mammalian cells. It is easy to grow, the introduction of foreign genes is relatively simple and, due to the size of the vaccinia genome, it can accept large pieces of foreign DNA. Glycosylation in insect cells is not as complex as in mammalian cells and usually glycoproteins produced in insect cells are of slightly lower molecular mass than those produced in mammalian cells. The most common vector for expression of glycoproteins in insect cells is a baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The great advantage of this system is a very high level of expression of foreign genes.  相似文献   

15.
Double subgenomic Sindbis virus (dsSINV) vectors are widely used for the expression of proteins, peptides, and RNA sequences. These recombinant RNA viruses permit high level expression of a heterologous sequence in a wide range of animals, tissues, and cells. However, the alphavirus genome structure and replication strategy is not readily amenable to the expression of more than one heterologous sequence. The Rhopalosiphum padi virus (RhPV) genome contains two internal ribosome entry site (IRES) elements that mediate cap-independent translation of the virus nonstructural and structural proteins. Most IRES elements that have been characterized function only in mammalian cells but previous work has shown that the IRES element present in the 5' untranslated region (UTR) of the RhPV genome functions efficiently in mammalian, insect, and plant systems. To determine if the 5' RhPV IRES element could be used to express more than one heterologous sequence from a dsSINV vector, RhPV 5' IRES sequences were placed between genes for two different fluorescent marker proteins in the dsSINV, TE/3'2J/mcs. While mammalian and insect cells infected with recombinant viruses containing the RhPV sequences expressed both fluorescent marker proteins, only single marker proteins were routinely observed in cells infected with dsSINV vectors in which the RhPV IRES had been replaced by a luciferase fragment, an antisense RhPV IRES, or no intergenic sequence. Thus, we report development of a versatile tool for the expression of multiple sequences in diverse cell types.  相似文献   

16.
Recombinant mammalian glycoproteins produced by the baculovirus-insect cell expression system usually do not have structurally authentic glycans. One reason for this limitation is the virtual absence in insect cells of certain glycosyltransferases, which are required for the biosynthesis of complex, terminally sialylated glycoproteins by mammalian cells. In this study, we genetically transformed insect cells with mammalian beta 1,4-galactosyltransferase and alpha 2,6-sialyltransferase genes. This produced a new insect cell line that can express both genes, serve as hosts for baculovirus infection, and produce foreign glycoproteins with terminally sialylated N-glycans.  相似文献   

17.
Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production. To address this problem, we previously isolated two transgenic insect cell lines that have mammalian beta1,4-galactosyltransferase or beta1,4-galactosyltransferase and alpha2,6-sialyltransferase genes. Unlike the parental insect cell line, both transgenic cell lines expressed the mammalian glycosyltransferases and were able to produce terminally galactosylated or sialylated N-glycans. The purpose of the present study was to investigate the structures of the N-glycans produced by these transgenic insect cell lines in further detail. Direct structural analyses revealed that the most extensively processed N-glycans produced by the transgenic insect cell lines were novel, monoantennary structures with elongation of only the alpha1,3 branch. This led to the hypothesis that the transgenic insect cell lines lacked adequate endogenous N-acetylglucosaminyltransferase II activity for biantennary N-glycan production. To test this hypothesis and further extend the N-glycan processing pathway in Sf9 cells, we produced a new transgenic line designed to constitutively express a more complete array of mammalian glycosyltransferases, including N-acetylglucosaminyltransferase II. This new transgenic insect cell line, designated SfSWT-1, has higher levels of five glycosyltransferase activities than the parental cells and supports baculovirus replication at normal levels. In addition, direct structural analyses showed that SfSWT-1 cells could produce biantennary, terminally sialylated N-glycans. Thus, this study provides new insight on the glycobiology of insect cells and describes a new transgenic insect cell line that will be widely useful for the production of more authentic recombinant glycoproteins by baculovirus expression vectors.  相似文献   

18.
Due to its specialized post-translational machinery, mammalian cells represent an interesting and not fully explored system to express snake toxins. Therefore, in this work, we built up a new mammalian expression vector that enhances the feasibility to use mammalian cells to express proteins as biomarkers. Among the modifications, an Igκ signal peptide and a 6xHis tag were inserted into this vector in order to drive the protein to the supernatant and simplify its purification, respectively. In addition, to facilitate selection of high producing clones and also tag proteins which may function as a biomarker, the sequence of enhanced green fluorescent protein (EGFP) was added. The efficiency of the resulting vector (pToxEGFP) was tested by cloning and expressing the viper venom disintegrin echistatin (Ech) that due to its affinity to integrin αvβ3 was tested as a molecular marker. Expression of EGFP-Ech was achieved in CHO-DXB11 cells resulting in a yield of 22 mg/L. The binding activity of this chimera protein was successfully achieved on human umbilical vein endothelial cells which highly express αvβ3. The results indicate that pToxEGFP may constitute an efficient and versatile expression vector to express tagged proteins with potential biomarker activity.  相似文献   

19.
Transduction of proteins and other macromolecules constitutes a potent technology to analyze cell functions and to achieve therapeutic interventions. In general, fusion proteins with protein transduction domains, such as TAT, are produced in a bacterial expression system. Here we describe the generation of a mammalian expression vector coding for TAT-EGFP fusion protein. Transfection of CHO-K1 cells by this vector and subsequent selection by Zeocin resulted in cell lines that express and secrete EGFP, a variant of the green fluorescent protein GFP. The ultimate cell line was produced by first cloning the stable integrants and subsequent selection of EGFP-expressing cells by flow cytometric sorting. In the resulting cell line approximately 98% of cells express EGFP. Using the same methodology, we generated cell lines that express DsRed fluorescent protein. The advantages of using such a mammalian expression system include the ease of generating TAT fusion proteins and the potential for sustained production of such proteins in vitro and, potentially, in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号