共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexandra S. Gardner Ilya M.D. Maclean Kevin J. Gaston 《Diversity & distributions》2019,25(8):1318-1333
2.
3.
Nader Habibzadeh Arash Ghoddousi Benjamin Bleyhl Tobias Kuemmerle 《Conservation Science and Practice》2021,3(5):e375
Climate change disproportionately threatens alpine species, by reducing available habitat and by isolating their populations. These pressures are particularly relevant for rear-edge populations, which typically occupy more marginal habitat compared to populations at the core of species' ranges. We studied Caucasian grouse Lyrurus mlokosiewiczi in the Caucasus ecoregion, a global biodiversity hotspot where this species is endemic, to understand potential climate change impacts on the species. Specifically, we assessed how climate change impacts rear-edge populations and how important these populations are for understanding range shifts and adaptive capacity under climate change. We used maximum entropy modeling to assess changes in the distribution of climatically suitable habitat under present and 2070 climate conditions for the representative concentration pathways 8.5 (RCP8.5). Our results revealed that ignoring rear-edge populations leads to a significant underestimation of the future range (by about 14,700 km2). Rear-edge populations were better adapted to warmer climates compared to core populations, and ignoring them, therefore, also underestimates adaptive capacity. Preventing the loss of rear-edge populations should, therefore, be a priority for conservation planning in the face of climate change. Because the Caucasian grouse is associated with alpine mountain tops, conservation should focus on establishing connectivity between rear-edge and core populations (e.g., via transboundary corridors or assisted colonizations). Our study reveals how species distribution modeling can highlight the importance of rear-edge populations for mitigating climate change impacts on species of conservation concern. 相似文献
4.
Felipe W. Pereira;Matheus L. Araujo;Fernanda T. Brum;Gabriel A. R. Melo;Mauricio O. Moura;Rodrigo B. Gonçalves; 《Journal of Biogeography》2024,51(11):2259-2273
To provide an assessment of climate change impacts on a set of wild pollinators restricted to one of the regions with the greatest diversity of bees in the world. Also, we aimed to test whether functional groups responded differently to climate projections. 相似文献
5.
Celine Bellard Jonathan M. Jeschke Boris Leroy Georgina M. Mace 《Ecology and evolution》2018,8(11):5688-5700
Climate change and biological invasions are threatening biodiversity and ecosystem services worldwide. It has now been widely acknowledged that climate change will affect biological invasions. A large number of studies have investigated predicted shifts and other changes in the geographic ranges of invasive alien species related to climate change using modeling approaches. Yet these studies have provided contradictory evidence, and no consensus has been reached. We conducted a systematic review of 423 modeling case studies included in 71 publications that have examined the predicted effects of climate change on those species. We differentiate the approaches used in these studies and synthesize their main results. Our results reaffirm the major role of climate change as a driver of invasive alien species distribution in the future. We found biases in the literature both regarding the taxa, toward plants and invertebrates, and the areas of the planet investigated. Despite these biases, we found for the plants and vertebrates studied that climate change will more frequently contribute to a decrease in species range size than an increase in the overall area occupied. This is largely due to oceans preventing terrestrial invaders from spreading poleward. In contrast, we found that the ranges of invertebrates and pathogens studied are more likely to increase following climate change. An important caveat to these findings is that researchers have rarely considered the effects of climate change on transport, introduction success, or the resulting impacts. We recommend closing these research gaps, and propose additional avenues for future investigations, as well as opportunities and challenges for managing invasions under climate change. 相似文献
6.
RACHAEL HICKLING † DAVID B. ROY JANE K. HILL† RICHARD FOX‡ CHRIS D. THOMAS† 《Global Change Biology》2006,12(3):450-455
Evidence is accumulating of shifts in species' distributions during recent climate warming. However, most of this information comes predominantly from studies of a relatively small selection of taxa (i.e., plants, birds and butterflies), which may not be representative of biodiversity as a whole. Using data from less well‐studied groups, we show that a wide variety of vertebrate and invertebrate species have moved northwards and uphill in Britain over approximately 25 years, mirroring, and in some cases exceeding, the responses of better‐known groups. 相似文献
7.
8.
Sean Hoban Andria Dawson John D. Robinson Adam B. Smith Allan E. Strand 《Ecography》2019,42(12):1991-2011
A primary focus of historical biogeography is to understand changes in species ranges, abundance and genetic connectivity, and changes in community composition. Traditionally, biogeographic inference has relied on distinct lines of evidence, including DNA sequences, fossils and hindcasted ecological niche models. In this review we propose that the development of integrative modeling approaches that leverage multiple distinct data types from diverse disciplines has the potential to revolutionize the field of biogeography. Although each data type contains information on a distinct aspect of species’ biogeographic histories, few studies formally integrate multiple types in analysis. For example, post hoc congruence among analyses based on different data types (e.g. fossils and genetics) is commonly assumed to indicate likely biogeographic histories. Unfortunately, analyses of different data often reach discordant conclusions. Thus, fundamental and unresolved debates continue regarding speed and timing of postglacial migration, location and size of glacial refugia, and degree of long distance dispersal. Formal statistical integration can help address these issues. More specifically, formal integration can leverage all available evidence, account for inherent biases associated with different data types, and quantify data and process uncertainty. Novel, quantitative integration of data and models across fields is now possible due to recent advances in cyberinfrastructure, spatial modeling, online and aggregated ecological databases, data processing and quantitative methods. Our purpose is to make the case for and give examples of rigorous integration of genetic, fossil and environmental/occurrence data for inferring biogeographic history. In particular, we 1) review the need for such a framework; 2) explain common data types and approaches used to infer biogeographic history (and the challenges with each); 3) review state‐of‐the‐art examples of data integration in biogeography; 4) lay out a series of novel, suggested improvements on current methods; and 5) provide an outlook on technical feasibility and future opportunities. 相似文献
9.
Chiara Polce Michael P Garratt Mette Termansen Julian Ramirez‐Villegas Andrew J Challinor Martin G Lappage Nigel D Boatman Andrew Crowe Ayenew Melese Endalew Simon G Potts Kate E Somerwill Jacobus C Biesmeijer 《Global Change Biology》2014,20(9):2815-2828
Understanding how climate change can affect crop‐pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios. 相似文献
10.
Jennifer McHenry Heather Welch Sarah E. Lester Vincent Saba 《Global Change Biology》2019,25(12):4208-4221
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management. 相似文献
11.
12.
Assumptions about factors such as climate in shaping species'' realized and potential distributions underlie much of conservation planning and wildlife management. Climate and climatic change lead to shifts in species distributions through both direct and indirect ecological pressures. Distributional shifts may be particularly important if range overlap is altered between interacting species, or between species and protected areas. The cattle family (Bovidae) represents a culturally, economically, and ecologically important taxon that occupies many of the world''s rangelands. In contemporary North America, five wild bovid species inhabit deserts, prairies, mountains, and tundra from Mexico to Greenland. Here, we aim to understand how future climate change will modify environmental characteristics associated with North American bovid species relative to the distribution of extant protected areas. We fit species distribution models for each species to climate, topography, and land cover data using observations from a citizen science dataset. We then projected modeled distributions to the end of the 21st century for each bovid species under two scenarios of anticipated climate change. Modeling results suggest that suitable habitat will shift inconsistently across species and that such shifts will lead to species‐specific variation in overlap between potential habitat and existing protected areas. Furthermore, projected overlap with protected areas was sensitive to the warming scenario under consideration, with diminished realized protected area under greater warming. Conservation priorities and designation of new protected areas should account for ecological consequences of climate change. 相似文献
13.
Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. 相似文献
14.
Kerrie M. Sendall Peter B. Reich Changming Zhao Hou Jihua Xiaorong Wei Artur Stefanski Karen Rice Roy L. Rich Rebecca A. Montgomery 《Global Change Biology》2015,21(3):1342-1357
Rising temperatures caused by climate change could negatively alter plant ecosystems if temperatures exceed optimal temperatures for carbon gain. Such changes may threaten temperature‐sensitive species, causing local extinctions and range migrations. This study examined the optimal temperature of net photosynthesis (Topt) of two boreal and four temperate deciduous tree species grown in the field in northern Minnesota, United States under two contrasting temperature regimes. We hypothesized that Topt would be higher in temperate than co‐occurring boreal species, with temperate species exhibiting greater plasticity in Topt, resulting in better acclimation to elevated temperatures. The chamberless experiment, located at two sites in both open and understory conditions, continuously warmed plants and soils during three growing seasons. Results show a modest, but significant shift in Topt of 1.1 ± 0.21 °C on average for plants subjected to a mean 2.9 ± 0.01 °C warming during midday hours in summer, and shifts with warming were unrelated to species native ranges. The 1.1 °C shift in Topt with 2.9 °C warming might be interpreted as suggesting limited capacity to shift temperature response functions to better match changes in temperature. However, Topt of warmed plants was as well‐matched with prior midday temperatures as Topt of plants in the ambient treatment, and Topt in both treatments was at a level where realized photosynthesis was within 90–95% of maximum. These results suggest that seedlings of all species were close to optimizing photosynthetic temperature responses, and equally so in both temperature treatments. Our study suggests that temperate and boreal species have considerable capacity to match their photosynthetic temperature response functions to prevailing growing season temperatures that occur today and to those that will likely occur in the coming decades under climate change. 相似文献
15.
16.
Sean A. Parks Lisa M. Holsinger John T. Abatzoglou Caitlin E. Littlefield Katherine A. Zeller 《Global Change Biology》2023,29(10):2681-2696
Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land area and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30 × 30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate. 相似文献
17.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology. 相似文献
18.
Drew W. Purves 《Proceedings. Biological sciences / The Royal Society》2009,276(1661):1477-1484
Regional species–climate correlations are well documented, but little is known about the ecological processes responsible for generating these patterns. Using the data from over 690 000 individual trees I estimated five demographic rates—canopy growth, understorey growth, canopy lifespan, understorey lifespan and per capita reproduction—for 19 common eastern US tree species, within the core and the northern and southern boundaries, of the species range. Most species showed statistically significant boundary versus core differences in most rates at both boundary types. Differences in canopy and understorey growth were relatively small in magnitude but consistent among species, being lower at the northern (average −17%) and higher at the southern (average +12%) boundaries. Differences in lifespan were larger in magnitude but highly variable among species, except for a marked trend for reduced canopy lifespan at the northern boundary (average −49%). Differences in per capita reproduction were large and statistically significant for some species, but highly variable among species. The rate estimates were combined to calculate two performance indices: R0 (a measure of lifetime fitness in the absence of competition) was consistently lower at the northern boundary (average −86%) whereas Z* (a measure of competitive ability in closed forest) showed no sign of a consistent boundary–core difference at either boundary. 相似文献
19.
20.
Melina Ferreira Martello;Jessica Bleuel;Maria Grazia Pennino;Guilherme Ortigara Longo; 《Diversity & distributions》2024,30(8):e13851
Predicting and acting on the future of ecosystems requires understanding species distribution shifts due to climate change. We investigated which corals are more likely to shift their distribution in the Southwestern Atlantic under a warming scenario. 相似文献