首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recently cloned angiotensin II type 2 (AT2) receptor is a member of the seven transmembrane G-protein coupled receptor superfamily with a relatively low sequence homology with the angiotensin II type 1 (AT1) receptor subtype and counteracts the growth action of AT1 receptor. Intracellular third loops are known to be involved in interactions with various G proteins. We hypothesized that the intracellular third loop plays critical roles in determining the specificity of opposite functions of AT1 and AT2 receptor subtypes and examined this possibility using chimeric AT1 receptor, of which intracellular third loop is replaced with that of AT2 receptor. We transfected this chimeric receptor into PC 12 cells and observed that stimulation of this receptor inhibited extracellular signal-regulated kinase (ERK) activation and induces apoptosis, whereas the binding characteristics of this receptor remained those of ATI receptor. Taken together, these results support the notion that intracellular third loop is the critical determinant for mutually antagonistic AT1 and AT2 receptors' signaling pathways.  相似文献   

2.
Gene switching and the stability of odorant receptor gene choice   总被引:9,自引:0,他引:9  
  相似文献   

3.
Photoaffinity labeling of receptors by bound agonists can provide important spatial constraints for molecular modeling of activated receptor complexes. Secretin is a 27-residue peptide hormone with a diffuse pharmacophoric domain that binds to the secretin receptor, a prototypic member of the Class B family of G protein-coupled receptors. In this work, we have developed, characterized, and applied two new photolabile probes for this receptor, with sites for covalent attachment in peptide positions 12 and 14, surrounding the previously most informative site of affinity labeling of this receptor. The [Tyr10,(BzBz)Lys12]rat secretin-27 probe covalently labeled receptor residue Val6, whereas the [Tyr10,(BzBz)Lys14]rat secretin-27 probe labeled receptor residue Pro38. When combined with previous photoaffinity labeling data, there are now seven independent sets of constraints distributed throughout the peptide and receptor amino-terminal domain that can be used together to generate a new molecular model of the ligand-occupied secretin receptor. The amino-terminal domain of this receptor presented a stable platform for peptide ligand interaction, with the amino terminus of the peptide hormone extended toward the transmembrane helix domain of the receptor. This provides clear insights into the molecular basis of natural ligand binding and supplies testable hypotheses regarding the molecular basis of activation of this receptor.  相似文献   

4.
The B(2) bradykinin receptor belongs to the G-protein coupled receptor family. Development of new drugs for this important therapeutic target requires structural information on the receptor. The main goal of the present work was to overexpress the human B(2) receptor for future biophysical studies. Different tagged B(2) receptors were engineered and their properties were evaluated by transient expression in HEK293S cells. A B(2) receptor tagged with a hexahistidine at the N-terminus and a nonapeptide at the C-terminus was selected for high expression level and preserved ligand-binding characteristics. First, we generated a HEK293S stable cell line expressing the receptor constitutively at a level of 60pmol/mg of crude membrane protein. However, the decrease of expression level with cell passages led us to express the B(2) receptor in a HEK293S tetracycline-inducible stable cell line. Induction of expression of the B(2) receptor with tetracycline and sodium butyrate led to a level of 100pmol/mg of membrane protein, which is the highest level reported so far for this receptor. The expression level was stable with cell passages and the ligand-binding and signal transduction properties of the receptor were unaltered. The receptor was purified to near homogeneity by solubilization with n-dodecyl-beta-d-maltoside followed by a two-step purification procedure combining hydroxyapatite and immunoaffinity chromatography. Although the purified receptor is not functional, the purification of the B(2) receptor to near homogeneity from a stable cell line overexpressing this receptor pave the way for future structural studies of this receptor.  相似文献   

5.
Oligomerization of the Class II G protein-coupled secretin receptor has been reported, but the molecular basis for this and its functional significance have not been determined. In the current work, we have examined the possible contribution of each of the transmembrane (TM) segments of this receptor to its homo-oligomerization, using the method of competitive disruption screening for inhibition of receptor bioluminescence resonance energy transfer signal. TM IV was the only segment that was found to disrupt receptor bioluminescence resonance energy transfer. Evaluation of predicted interhelical and lipid-exposed faces of this TM segment demonstrated that its lipid-exposed face represented the determinant for oligomerization. This was further confirmed by mutagenesis of the intact secretin receptor. Morphological FRET was utilized to demonstrate that secretin receptor oligomerization occurred at the cell surface and that this oligomerization was disrupted by mutating Gly(243) and Ile(247), key residues within the lipid-exposed face of TM IV. Although disruption of the receptor oligomerization interface had no effect on secretin binding parameters, it reduced the ability of secretin to stimulate intracellular cAMP. This supports a clear functional effect of oligomerization of this receptor. Such an effect might be particularly relevant to clinical situations in which this receptor is overexpressed, such as in certain neoplasms.  相似文献   

6.
The epidermal growth factor (EGF) receptor plays a key role in the control cellular proliferation, and its homology to the avian erythroblastosis virus erb B oncogene implicates its involvement in cellular transformation. The establishment of a correlation between the various structural domains of the EGF receptor and their functional counterparts would greatly advance our understanding of these processes. To this end, we have constructed an expression vector containing the SP6 viral promoter and an adjacent cDNA fragment encoding the full-length EGF receptor. Upon addition of SP6 RNA polymerase, this DNA is capable of generating large amounts of EGF receptor mRNA; this RNA can then be translated in vitro into immunoprecipitable EGF receptor protein. The translational efficiency of this EGF receptor RNA was found to be relatively low: approx. 100-fold lower than globin RNA synthesized using SP6 RNA polymerase. Use of these tools should now permit the synthesis and analysis of mutated EGF receptor protein in an effort to clarify the role of this receptor in growth control.  相似文献   

7.
8.
Phosphorylation of the chicken progesterone receptor   总被引:3,自引:0,他引:3  
We have examined the phosphorylation of the chicken progesterone receptor in tissue slices and in vitro. The receptor is phosphorylated in tissue slices and this phosphorylation is stimulated by progesterone. As others have reported, partially purified receptor preparations contain a kinase activity which phosphorylates histones and receptor. We have shown that this activity can be separated from the receptor. The receptor is a substrate for several kinases, including the catalytic subunit of the cAMP-dependent protein kinase and PPdPK, a polypeptide-dependent protein kinase. Phosphorylation by the cAMP-dependent protein kinase results in an apparent increase in the molecular weight of the receptor when the receptor is analyzed by SDS-PAGE. These results are consistent with apparent changes in molecular weight observed for rabbit and human progesterone receptor upon treatment of tissue or cells with hormone.  相似文献   

9.
In B lymphopoiesis, Ag receptor expression and signaling are critical to determine developmental progression, survival, and activation. Several positive and negative selection checkpoints to test this receptor have been described in B lymphopoiesis, aiming to ensure the generation of functionally competent, nonautoimmune repertoire. Secondary Ag receptor gene recombination allows B lymphocytes to replace an inappropriate receptor with a new receptor, a mechanism called receptor editing. This salvage mechanism uncouples the Ag receptor fate from that of the cell itself, suggesting that B cell repertoire is regulated by a process of receptor selection. Secondary rearrangements are stimulated in different stages of B cell development, where editing of the receptor is necessary to fulfill stage-specific requirements. In this study, we discuss the contribution of receptor editing in B lymphopoiesis and its regulation by positive and negative selection signals.  相似文献   

10.
The nucleotide and amino acid sequences for rat type I angiotensin II receptor were deduced through molecular cloning and sequence analysis of its complementary DNAs. The rat angiotensin II receptor consists of 359 amino acid residues and has a sequence similar to G protein-coupled receptors. The expression of this receptor gene was detected in the adrenal, liver and kidney by Northern blotting. Sodium deprivation positively modulated the expression of the receptor gene in the adrenal. No detectable change was observed in the expression levels of this receptor gene between spontaneously hypertensive rats and Wistar-Kyoto rats in the tissues examined including the adrenal, brain, kidney and liver. Interestingly the expression of this receptor gene was developmentally regulated.  相似文献   

11.
The transferrin receptor undergoes extensive co- and post-translational modifications during its biosynthesis. In this study, the functional and structural properties of the transferrin receptor from tunicamycin-treated A431 cells were examined. Incubation of A431 cells with this inhibitor of asparagine-linked glycosylation results in a shift of the apparent molecular weight of the transferrin receptor from 94,000 to 79,000. The electrophoretic mobility of the receptor from treated cells is that of a monomer under nonreducing conditions, whereas the transferrin receptor in untreated cells has the mobility of a dimer under identical conditions. This result indicates a lack of disulfide bond formation between subunits of the receptor from tunicamycin-treated cells. In solution no dimers can be detected with cross-linking studies. This unglycosylated receptor does not appear to stably bind transferrin as demonstrated by a lack of isolation of this form of the receptor with transferrin-linked Sepharose. It is not transported to the surface of A431 cells.  相似文献   

12.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

13.
The secretin receptor, a prototypic family B G protein-coupled receptor, forms a constitutive homodimeric complex that is stable even in the presence of hormone. Recently, a model of this agonist-bound receptor was built based on high resolution structures reported for amino-terminal domains of other family members. Although this model provided the best solution for all extant data, including 10 photoaffinity labeling constraints, a new such constraint now obtained with a position 16 photolabile probe was inconsistent with this model. As the secretin receptor forms constitutive homodimers, we explored whether secretin might dock across both protomers of the complex, an observation that could also contribute to the negative cooperativity observed. To directly explore this, we prepared six secretin analogue probes that simultaneously incorporated two photolabile benzoylphenylalanines as sites of covalent attachment, in positions known to label distinct receptor subdomains. Each bifunctional probe was a full agonist that labeled the receptor specifically and saturably, with electrophoretic migration consistent with labeling a single protomer of the homodimeric secretin receptor. No band representing radiolabeled receptor dimer was observed with any bifunctional probe. The labeled monomeric receptor bands were cleaved with cyanogen bromide to demonstrate that both of the photolabile benzoylphenylalanines within a single probe had established covalent adducts with a single receptor in the complex. These data are consistent with a model of secretin occupying a single secretin receptor protomer within the homodimeric receptor complex. A new molecular model accommodating all constraints is now proposed.  相似文献   

14.
We report the isolation of a full-length rat cDNA for a new activin receptor. The deduced amino acid sequence of this receptor shows 67 percent overall identity with that of a previously identified mouse activin receptor. As predicted for the mouse activin receptor, the amino acid sequence of the rat receptor is consistent with a polypeptide containing an extracellular ligand binding domain, a hydrophobic transmembrane domain, and a serine/threonine kinase intracellular domain. In an expression assay, this new receptor was found to bind I125 radiolabeled activin.  相似文献   

15.
In this study, we replaced the basic amine function of the known histamine H(3) receptor agonists imbutamine or immepip with non-basic alcohol or hydrocarbon moieties. All compounds in this study show a moderate to high affinity for the cloned human H(3) receptor and, unexpectedly, almost all of them act as potent agonists. Moreover, in the alcohol series, we consistently observed an increased selectivity for the human H(3) receptor over the human H(4) receptor, but none of the compounds in this series possess increased affinity and functional activity compared to their alkylamine congeners. In this new series of compounds VUF5657, 5-(1H-imidazol-4-yl)-pentan-1-ol, is the most potent histamine H(3) receptor agonist (pK(i) = 8.0 and pEC(50) = 8.1) with a 320-fold selectivity at the human H(3) receptor over the human H(4) receptor.  相似文献   

16.
Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.  相似文献   

17.
The aim of this review is to summarize some of the main findings from our laboratory as well as from others concerning the biochemical, molecular, and functional properties of the alpha1b-adrenergic receptor. Experimental and computational mutagenesis of the alpha1b-adrenergic receptor have been instrumental in elucidating some of the molecular mechanisms underlying receptor activation and receptor coupling to Gq. The knockout mouse model lacking the alpha1b-adrenergic receptor has highlighted the potential implication of this receptor subtype in variety of functions including the regulation of blood pressure, glucose homeostasis, and the rewarding response to drugs of abuse.  相似文献   

18.
The effects of protein synthesis inhibitors and the lysosomotropic agent chloroquine on the metabolism of the insulin receptor were examined. Through the use of the heavy-isotope density shift technique, cycloheximide was found to inhibit both the synthesis of new insulin receptor and the inactivation of old cellular insulin receptor. Upon investigation of the locus of this effect of protein synthesis inhibition, it was found that cycloheximide did not inhibit 1) the translocation of receptor from the cell surface to an intracellular site, 2) the recycling of receptor from the internal site back to the plasma membrane, nor 3) the degradation of insulin. Cycloheximide did, however, rapidly and completely inhibit the inactivation of the insulin receptor. In the presence of extracellular insulin, this effect of cycloheximide resulted in the long-term (6 h) accumulation of receptor in a trypsin-resistant intracellular compartment. Puromycin and pactamycin, protein synthesis inhibitors with mechanisms of action which differ from cycloheximide, produced the same effects on insulin receptor metabolism as cycloheximide, indicating that this effect on receptor metabolism is due to the inhibition of protein synthesis and not a secondary effect of cycloheximide. Actinomycin D also inhibited the inactivation of receptor. Chloroquine inhibited the receptor-mediated degradation of insulin, but had no effect on either the internalization or inactivation of the insulin receptor. The insulin-induced recycling of the internalized receptor was inhibited by chloroquine, possibly through the inhibition of the discharge of insulin from the insulin-receptor complex. From these observations, we suggest that 1) a protein factor is required to inactivate the insulin receptor, 2) this protein and the messenger RNA coding for the protein have short cellular half-lives, and 3) insulin degradation and insulin receptor inactivation are distinct, separable processes which not only occur at different rates, but possibly occur in distinct subcellular locations.  相似文献   

19.
20.
The characterization of the cellular and molecular mechanisms governing insulin receptor internalization is of crucial importance to better define the functional role of this process in insulin receptor regulation and insulin action both in normal and pathological conditions. In the present work we have characterized the factors intrinsic to the receptor which are responsible for the triggering and regulation of insulin receptor internalization. We found that: (a) insulin induces the internalization of its receptor via activation of the tyrosine kinase intrinsic to the cytoplasmic domain of the molecule; (b) this ligand-specific step consists in the redistribution of the receptor from microvilli where binding occurs to the nonvillous region of the cell surface where internalization occurs; (c) the second step of the internalization process, i.e. association with clathrin-coated pits, requires a consensus sequence of the juxtamembrane domain of the receptor, and (d) this step is ligand-independent and is responsible for the constitutive internalization of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号