首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Propionic acid was produced byPropionibacterium acidi-propionici from sweet-whey permeate in a stirred tank reactor (CSTR) with cell recycle by ultrafiltration. The highest volumetric productivity achieved was 14.3 g.l–1. h–1, with a biomass of 100 g.l–1 (dry weight). More concentrated product can be obtained by electrodialysis of the cell free fermentation medium.  相似文献   

2.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

3.
Summary Batch and continuous two-stage cultures have been conducted in order to determine the effect of yeast extract (YE) on the homolactic fermentation of whey permeate byLactobacillus helveticus. Supplementation with YE had a significant effet on lactic acid concentration, volumetric productivity, and substrate conversion, but not on lactic acid yield. Volumetric productivity in the first stage increased from 2 to 9 g l–1 per hour by increasing the YE concentration from 1.5 to 25 g l–1 At the same time conversion improved from 22% to 93% at a dilution rate of 0.2 h–1. The second stage demonstrated the effect of YE at a lower dilution rate (0.14 h–1. A high system conversion (97%) and a high final lactic acid concentration (40 g l–1) were achieved with 10 g l–1 YE.  相似文献   

4.
With a cell concentration of 125 g dry biomass 1–1 and a dilution rate of 0.1 h–1,Propionibacterium acidipropionici produces 30 g propionic acid 1–1 from sugar with a productivity of 3 g 1–1 h–1. The yield of propionic acid is approx. 0.36–0.45 g propionic acid g–1 sucrose and is independent of the dilution rate and cell concentration. Acetic acid is an unwanted by-product in the production of propionic acid. The concentration of acetic acid only increases slightly when the cell concentration is increased. A two-stage fermentation process was developed for the conversion of sugar or molasses of various types to propionic acid and vitamin B12. By fermentation of blackstrap molasses (from sugar beet and sugar cane) in the first fermentation stage 17.7 g propionic acid 1–1 with a yield of 0.5 g propionic acid g–1 carbohydrate was produced with a dilution rate of 0.25 h–1. In the second stage 49 mg vitamin B12 1–1 was produced at a dilution rate of 0.03 h–1.  相似文献   

5.
The continuous bioconversion of xylose-containing solutions (obtained by acid hydrolysis of barley bran) into xylitol was carried out using the yeast Debaryomyces hansenii under microaerophilic conditions with or without cell recycle. In fermentations without cell recycle, the volumetric productivities ranged from 0.11–0.6 g l–1 h–1 were obtained for dilution rates of 0.008–0.088 h–1. In experiments performed with cell recycle after membrane separation, the optimum xylitol productivity (2.53 g l–1 h–1) was reached at a dilution rate of 0.284 h–1.  相似文献   

6.
Poly--hydroxybutyrate was produced in shake cultures by Alcaligenes eutrophus H16 on fructose, xylose, and fumaric, itaconic, lactic and propionic acids in a three-stage process. The maximum polymer concentration of 6.9 g l–1 (69% of cell dry matter) was obtained with 20g l–1 of fructose with a volumetric productivity of about 0.22 g l–1 h–1 at 24h. Up to about 3 g l–1 (about 50% of cell dry matter) of polymer was also produced on lactic and propionic acids as the sole carbon source during the production phase. In multivatiate optimization employing an orthogonal 23-factorial central composite experimental design with fructose as the substrate in a single-stage process, the optimal initial fructose concentration decreased from 35 g l–1 to 24 g l–1 when the incubation time was increased from about 35 h to 96 h. The optimal shaking speed range was 90–113 rpm. Correspondence to: S. Linko  相似文献   

7.
Cells of the propionate-tolerant strain Propionibacterium acidipropionici P200910, immobilized in calcium alginate beads, were tested for propionic and acetic acid production both in a semidefined laboratory medium and in corn steep liquor in batch, fed-batch, and continuous fermentation. Cell density was about 9.8 × 109 cells/g (wet weight) of beads, and beads were added to the medium at 0.1 g (wet weight) beads/ml. Beads could be reused for several consecutive batch fermentations; propionic acid production in the tenth cycle was about 50%–70% of that in the first cycle. In batch culture complete substrate consumption (glucose in semidefined medium, lactate in corn steep liquor) and maximum acid production were seen within 36 h, and acid yields from the substrate were higher than in free-cell fermentations. Fed-batch fermentations were incubated up to 250 h. Maximum propionic acid concentrations obtained were 45.6 g/l in corn steep liquor and 57 g/l in semidefined medium; this is the highest concentration achieved to date in our laboratory. Maximum acetic acid concentrations were 17 g/l and 12 g/l, respectively. In continuous fermentation of semidefined medium, dilution rates up to 0.31 h–1 could be used, which gave higher volumetric productivities (0.96 g l–1 h–1 for propionic acid and 0.26 g l–1 h–1 for acetic acid) than we have obtained with free cells. Corn steep liquor shows promise as an inexpensive medium for production of both acids by immobilized cells of propionibacteria.Journal paper no. J- 15614 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project no. 3122  相似文献   

8.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

9.
Pseudomonas sp. 42A2 when incubated for 36 h with oleic acid (20 g l–1) in a stirred bioreactor, accumulated 10-hydroxy-8E-octadecenoic acid. Production in a 2 l bioreactor with 1.4 l of working volume, was increased from 0.65 g l–1 to 7.4 g l–1 with K L a values ranging between 15 and 200 h–1. A linear relationship was found between volumetric productivity and oxygen transfer rates and an exponential relation between the specific rate of product formation and specific growth rate.  相似文献   

10.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

11.
Summary The production of l-lactic acid from whey permeate, a waste product of the dairy industry, by fermentation with the lactic acid bacterium Lactobacillus casei subsp. casei was investigated. A fermentation medium consisting of permeate and supplements, which enables exponential growth of the organisms, was developed. A fast method for determination of free and immobilized biomass in solid-rich media, based on measurement of cellular ATP, was evolved. Continuous fermentations in a stirred tank reactor (STR) and in a fluidized bed reactor (FBR) with immobilized biomass were compared. In the STR a volumetric productivity of 5.5 g/l per hour at 100% substrate conversion [dilution rate (D) = 0.22 h–1] was determined. In the FBR porous sintered glass beads were used for immobilization and a maximum biomass concentration of 105 g/kg support was measured. A productivity of 10 g/l per hour was obtained at D = 0.4 h–1 (substrate conversion 93%) and of 13.5 g/l per hour at D = 1.0 h–1 (substrate conversion 50%). Offprint requests to: W. Krischke  相似文献   

12.
Summary A detailed investigation was undertaken to examine the influence of biotin and paminobenzoic acid (PABA) in chemostat cultures of Clostridium acetobutylicum ATCC 824. Initiation of chemostat cultures with a basic synthetic medium (biotin 0.01 mg l–1; PABA 1.0 mg l–1) have resulted in a low biomass together with a low specific rate of solvent production. A different picture emerged on elevating the concentration of both vitamins 8-fold: biomass and specific rates (solvent production, glucose consumption) were increased and a solvent productivity of 2.54 g l–1 h–1 at the solvent concentration of 13.1 g l–1 was achieved. It has also been shown that PABA was the only limiting factor for the metabolism of Clostridium acetobutylicum in the basic synthetic medium and that the optimised concentration was 8 mg l–1 in the chemostat cultures with the growth conditions employed.  相似文献   

13.
D(–)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(–)-lactic acid g–1 cellulose at a mean volumetric productivity of 0.5 g l–1 h–1. No L(+)-lactic acid was found in the medium.  相似文献   

14.
Long-term continuous ethanol production of up to 80 g.l1 with a volumetric ethanol productivity of 63 g. l?1. h?1 was maintained for more than 72 days using a Vertical Rotating Immobilized Cell Reactor of the bacterium Z. mobilis. Continuous production of higher ethanol concentration was unsuccessful due to an inhibition of cell growth by long exposure to high ethanol concentrations. However, ethanol concentration as high as 120g. l?1 and volumetric ethanol productivity of 13g. l?1. h?1 were achieved in a repeated-batch fermentation system using the same bioreactor. By a simple washing operation at the end of each run, immobilized biomass could be effectively regenerated and used to carry out more than 10 successive fermentation cycles.  相似文献   

15.
Summary The growth parameters ofPenicillium cyclopium have been evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates varied from 0.05 to 0.20 h–1 under constant conditions of temperature (28°C) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g l–1 for lactose and 0.14 mg l–1 for oxygen, respectively. For a wide range of dilution rates, the yield was 0.68 g g–1 biomass per lactose and the maintenance coefficient 0.005 g g–1 h–1 lactose per biomass, respectively. The maximum biomass productivity achieved was 2 g l–1 h–1 biomass at dilution rates of 0.16–0.17 h–1 with a lactose concentration of 20 g l–1 in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content varied from 43% to 54% and total nucleic acids from 6 to 9% in the range of dilution rates from 0.05 to 0.2 h–1, while the Lowry protein content was almost constant at approximately 37.5% of dry matter.Nomenclature (mg l–1) Co initial concentration of dissolved oxygen - (h–1) D dilution rate - (mg l–1) K02 saturation coefficient for oxygen - (g l–1) Ks saturation coefficient for substrate - (g g–1 h–1) lactose per biomass) m maintenance energy coefficient - (mM g–1 h–1O2 per biomass) Q02 specific oxygen uptake rate - (g l–1) S residual substrate concentration at steady state - (g l–1) So initial substrate concentration in feed - (min) t1/2 time when Co is equal to Co/2 - (g l–1) X biomass concentration - (g l–1) X biomass concentration at steady state - (g g–1 biomass per lactose) YG yield coefficient for cell growth - (g g–1 biomass per lactose) Yx/s overall yield coefficient - (h–1) specific growth rate  相似文献   

16.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

17.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   

18.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

19.
Instead of the conventional carbon sources used for propionic acid biosynthesis, the utilization of glycerol is considered here, since the metabolic pathway involved in the conversion of glycerol to propionic acid is redox-neutral and energetic. Three strains, Propionibacterium acidipropionici, Propionibacterium acnes and Clostridium propionicum were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerol. P. acidipropionici showed higher efficiency in terms of fermentation time and conversion yield than did the other strains. The fermentation profile of this bacterium consisted in propionic acid as the major product (0.844 mol/mol), and in minimal by-products: succinic (0.055 mol/mol), acetic (0.023 mol/mol) and formic (0.020 mol/mol) acids and n-propanol (0.036 mol/mol). The overall propionic acid productivity was 0.18 g l−1h−1. A comparative study with glucose and lactic acid as carbon sources showed both less diversity in end-product composition and a 17% and 13% lower propionic acid conversion yield respectively than with glycerol. Increasing the initial glycerol concentration resulted in an enhanced productivity up to 0.36 g l−1h−1 and in a maximal propionic acid concentration of 42 g/l, while a slight decrease of the conversion yield was noticed. Such a propionic acid production rate was similar or higher than the values obtained with lactic acid (0.35 g l−1h−1) or glucose (0.28 g l−1h−1). These results demonstrated that glycerol is a carbon source of interest for propionic acid production. Received: 15 July 1996 / Received revision: 11 November 1996 / Accepted: 11 November 1996  相似文献   

20.
Fed-batch cultures of Bacillus licheniformis produced poly--glutamic acid (PGA), a water-soluble biodegradable polymer. PGA reached 35 g l–1 with a productivity of 1 g l–1 h–1 by pulsed-feeding of citric acid (1.44 g h–1) and l-glutamic acid (2.4 g h–1) when citric acid was depleted from the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号