首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of presumed anti-calmodulin (anti-CaM) drugs was tested for their potential inhibitory effects on the isolated, purified and reconstituted Ca2+-pump ATPase of human red blood cell membranes. Anti-CaM drugs inhibited the Ca2+-pump ATPase both in the absence and presence of added CaM. Qualitatively similar inhibition was observed in two different ATPase assay systems. In asolectin vesicles in the absence of added CaM trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalene- sulfonamide (W-7), vinblastine, dibucaine, imipramine, propranolol and dimethylpropranolol (UM-272) were all inhibitory. Potency of anti-CaM drugs was generally greater on the enzyme reconstituted in asolectin vesicles than on the enzyme reconstituted in phosphatidylcholine vesicles, either in the presence or absence of CaM. The results emphasize that anti-CaM drugs have actions other than to bind to CaM. Possible direct interaction of amphipathic cationic anti-CaM drugs with the Ca2+-pump ATPase and/or its lipid environment is suggested.  相似文献   

2.
Previous work in several laboratories revealed little or no Ca2+ pump ATPase activity and little or no activation of the ATPase by calmodulin (CaM) in membranes isolated from dog red blood cells (RBCs). In the present work, intact RBCs from dogs were exposed to the ionophore, A23187, in the presence of Ca2+. A rapid, apparently first order, loss of ATP occurred under these conditions. The first order rate constant was 0.0944 min-1, or approximately 47% of that found in human RBCs under the same conditions. The anti-CaM drug, trifluoperazine, inhibited the loss of ATP and the Ca2+ activation curve of ATP loss in intact cells resembled that observed for CaM-activated Ca2+ pump ATPase in isolated human membranes. Taken together, these data are consistent with the interpretation that the dog RBC membrane contains a CaM-activated Ca2+ pump ATPase.  相似文献   

3.
A variety of presumed anti-calmodulin (anti-CaM) drugs was tested for their potential inhibitory effects on the isolated, purified and reconstituted Ca2+-pump ATPase of human red blood cell membranes. Anti-CaM drugs inhibited the Ca2+-pump ATPase both in the absence and presence of added CaM. Qualitatively similar inhibition was observed in two different ATPase assay systems. In asolectin vesicles in the absence of added CaM trifluoperazine (TFP), N-(6-aminohexyl)-5-chloro-1-naphthalene- sulfonamide (W-7), vinblastine, dibucaine, imipramine, propranolol and dimethylpropranolol (UM-272) were all inhibitory. Potency of anti-CaM drugs was generally greater on the enzyme reconstituted in asolectin vesicles than on the enzyme reconstituted in phosphatidylcholine vesicles, either in the presence or absence of CaM. The results emphasize that anti-CaM drugs have actions other than to bind to CaM. Possible direct interaction of amphipathic cationic anti-CaM drugs with the Ca2+-pump ATPase and/or its lipid environment is suggested.  相似文献   

4.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

5.
N,N'-dicyclohexylcarbodiimide (DCCD) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (CMCD) inhibited calmodulin-dependent Ca2(+)+Mg2(+)-ATPase activity in erythrocyte ghost membranes. The extent of the inhibition caused by carbodiimides strongly depended on their hydrophobicity. Hydrophobic DCCD was a more potent inhibitor then hydrophilic CMCD. Calmodulin (CaM) protected the enzyme against the former carbodiimide, whereas Ca2+ did the same against the latter. In contrast to previous observations made by Villalobo et al., on the purified enzyme, neither carbodiimide affected the calmodulin-independent ATPase activity in ghost membranes. Inhibition of the calmodulin-dependent ATPase activity was due to a decrease of the maximum activity, whereas the Km value for Ca2+ remained unchanged. Titration of erythrocyte ghost membranes with CaM revealed a biphasic response of ATPase to this activator. Two affinity constants were found for CaM, 0.64 nM and 14 nM. DCCD affected the interaction with CaM at high- and low-affinity binding sites in a competitive manner. CMCD acted as a noncompetitive inhibitor for CaM low-affinity sites, whereas it behaved in a competitive way against CaM interaction with high-affinity sites. In E2 form (stabilized by vanadate and EGTA) ATPase was more sensitive to carbodiimides than in E1 form (induced by La3+).  相似文献   

6.
Phosphorylation of the Ca2(+)-pump ATPase of cardiac sarcolemmal vesicles by exogenously added protein kinases was examined to elucidate the molecular basis for its regulation. The Ca2(+)-pump ATPase was isolated from protein kinase-treated sarcolemmal vesicles using a monoclonal antibody raised against the erythrocyte Ca2(+)-ATPase. Protein kinase C (C-kinase) was found to phosphorylate the Ca2(+)-ATPase. The stoichiometry of this phosphorylation was about 1 mol per mol of the ATPase molecule. The C-kinase activation resulted in up to twofold acceleration of Ca2+ uptake by sarcolemmal vesicles due to its effect on the affinity of the Ca2+ pump for Ca2+ in both the presence and absence of calmodulin. Both the phosphorylation and stimulation of ATPase activity by C kinase were also observed with a highly-purified Ca2(+)-ATPase preparation isolated from cardiac sarcolemma with calmodulin-Sepharose and a high salt-washing procedure. Thus, C-kinase appears to stimulate the activity of the sarcolemmal Ca2(+)-pump through its direct phosphorylation. In contrast to these results, neither cAMP-dependent protein kinase, cGMP-dependent protein kinase nor Ca2+/calmodulin-dependent protein kinase II phosphorylated the Ca2(+)-ATPase in the sarcolemmal membrane or the purified enzyme preparation, and also they exerted virtually no effect on Ca2+ uptake by sarcolemmal vesicles.  相似文献   

7.
A 240-kDa protein isolated from porcine aortic smooth muscle as a substrate for cGMP-dependent protein kinase (cGMP kinase) whose phosphorylation was in a close association with stimulation of partially purified plasma membrane Ca2+-pump ATPase by the kinase was later shown to represent splicing variants of type 1 inositol 1,4,5-trisphosphate (IP3) receptor. To further clarify the role played by this protein in the stimulation of Ca2+-pump ATPase, it was attempted in the present study to specifically remove the protein by immunoprecipitation with an antibody specific to type 1 IP3 receptor. Contrary to expectation, stimulation of the ATPase by cGMP kinase was still observed after removal of the IP3 receptor. Furthermore, cGMP kinase stimulated a highly purified preparation of Ca2+-pump ATPase deprived of IP3 receptor when the concentrations of the ATPase were low enough (10-20 nM) to make it retain a monomeric form, while it did not produce stimulation when the concentration of the enzyme was increased to 40 nM at which the enzyme is known to take an oligomeric, fully activated form insensitive to activation by calmodulin. Heat-inactivated cGMP kinase and cGMP kinase without cGMP failed to stimulate the highly purified Ca2+-pump ATPase. In addition, type I but not type I cGMP kinase was found to stimulate the ATPase. The stimulation of Ca2+-pump ATPase by cGMP kinase occurs without any detectable phosphorylation of the ATPase. In conclusion, cGMP kinase can stimulate the plasma membrane Ca2+-pump ATPase when it is in a monomeric form without phosphorylating the Ca2+-pump ATPase and that of the two cGMP kinase isozymes found in the vascular smooth muscle, only type I cGMP kinase participates in the stimulation.  相似文献   

8.
The purpose of the present study was to compare the ATPase activities of cardiac SR in two species in which the different intrinsic myocardial contractility can only partially be explained by the different properties of cardiac myosins. In cardiac SR isolated from rat heart, the total ATPase activity was 1512.5 +/- 23.3 nmol Pi/mg protein/min, nearly four times as high as in dog cardiac SR (408.8 +/- 28.9 nmol Pi/mg protein/min). The Ca2+-activated ATPase in rat cardiac SR represented only 23.8% of the total ATPase activity, while in dog cardiac SR it was approximately 50% of the total. Thus, the specific Ca2+-activated ATPase was nearly two times higher in the cardiac SR of the rat than in that of the dog. This higher rate of ATP hydrolysis in rat cardiac SR may be, at least in part, responsible for the increased intensity and shorter duration of the active state in the rat myocardium. Polyacrylamide gel electrophoresis of SR showed that the relative amount of Ca2+-pump protein was two times higher in dog heart, similar to the percentage of Ca2+-activated ATPase activity. At the same time, the specific Ca2+-activated ATPase activity and the relative amount of Ca2+ pump protein in both the rat and dog cardiac SR were inversely related.  相似文献   

9.
We have characterized the effect of a stable small molecule isolated from bovine hypothalamus (Haupert, G. T., and Sancho, J. M. (1979) Proc. Natl. Acad. Sci. 76, 4658-4660) on mammalian (Na,K)ATPase. This hypothalamus-derived inhibitory factor, HIF, has been shown to inhibit ATPase activity of purified dog kidney enzyme reversibly with high affinity (Haupert, G. T., Carilli, C. T., and Cantley, L. C. (1984) Am. J. Physiol. 247, F919-F924). In this report it is shown that HIF inhibits the ouabain sensitive component of 86Rb+ uptake into human red blood cells. HIF also inhibited (Na,K)ATPase activity of unsealed red cell membranes but not that of sealed inside-out vesicles, indicating that HIF is impermeant to red cell membranes and inhibits the (Na,K)ATPase from the extracellular side. In unsealed human red cell membranes, concentrations of HIF which caused 70% inhibition of the (Na,K)ATPase did not inhibit ATP hydrolysis by plasma membrane (Ca2+)ATPase or (Mg2+)ATPase. However, at a similar concentration, HIF was shown to inhibit rabbit muscle sarcoplasmic reticulum (Ca2+)ATPase. HIF also inhibited p-nitrophenylphosphatase activity of unmodified or fluorescein-5'-iso-thiocyanate labeled dog kidney (Na,K)ATPase. As judged by fluorescein fluorescence of the modified enzyme, HIF stabilized the low fluorescent "E2" conformation of the enzyme similar to that stabilized by ouabain. However, unlike ouabain, HIF blocked covalent phosphorylation of dog kidney (Na,K)ATPase by inorganic phosphate. These studies show that HIF is an inhibitor of (Na,K)ATPase which acts from the extracellular side of the membrane by a mechanism similar to but not identical to that of cardiac glycosides.  相似文献   

10.
The activity of the membrane-bound and the purified erythrocyte Ca2+-ATPase in the absence of calmodulin was stimulated by calpain digestion but could be further increased to maximal levels by calmodulin (CaM). Thus, CaM sensitivity was retained by the digested ATPase, at least at short times of incubation. In membranes digested at higher temperatures and in the purified ATPase digested at higher calpain/ATPase ratios, the ATPase became fully activated. The membrane-bound and the purified 138-kDa ATPase were converted by calpain to a fragment of approximately 124 kDa which still bound CaM and could be isolated on CaM columns when proteolysis occurred slowly but not when it occurred rapidly. Carboxypeptidase digestion of the purified enzyme and of its fragment of about 124 kDa has shown that calpain attacked the CaM-binding domain near the C terminus of the ATPase. This has also been supported by digestion of the purified enzyme and of its fragment of about 124 kDa. A first cut occurred in the middle of the domain producing a fragment of about 14 kDa and a (CaM-binding) fragment of about 124 kDa. A second cut closer to the N terminus of the domain also produced a fragment of about 124 kDa and accounted for the loss of CaM binding at prolonged times of incubation of the ATPase with calpain.  相似文献   

11.
A plasma membrane Ca(2+)-pump ATPase preparation purified from porcine aorta was incubated with cGMP-dependent protein kinase (G-kinase) under the conditions under which dose-dependent stimulation of the enzyme by G-kinase was observed. Several proteins were phosphorylated, but two isoforms of plasma membrane Ca(2+)-pump ATPase with molecular masses of 135- and 145-kDa were not phosphorylated. The protein that was phosphorylated by G-kinase and identified in our previous study as the 135-kDa isoform of Ca(2+)-pump ATPase, on the basis of its almost identical mobility on SDS-PAGE, was found to be another protein with a molecular mass of 138 kDa. Fractionation of the enzyme preparation after incubation with G-kinase by a newly developed calmodulin affinity chromatographic method resulted in the separation of all the G-kinase substrates from the two isoforms of plasma membrane Ca(2+)-pump ATPase. These results suggest that the direct phosphorylation of the Ca(2+)-pump ATPase does not occur in association with the stimulation of the plasma membrane Ca(2+)-pump ATPase by G-kinase.  相似文献   

12.
Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive   总被引:2,自引:0,他引:2  
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

13.
It was found, using circular dichroism spectroscopy, that CaM, in the presence of Ca2+, decreases the alpha-helix content of (Ca2(+)-Mg2+)ATPase of porcine erythrocytes from 66% to 55%. In the absence of Ca2+ the enzyme showed 46% of alpha-helix. Moreover, quenching of the ATPase intrinsic fluorescence by acrylamide indicated that, depending on the enzyme conformational status, the accessibility of its tryptophan residues is influenced by direct interaction with CaM at micromolar Ca2+ concentration. This was also confirmed by the observation that fluorescence energy transfer occurred from tryptophan residues of (Ca2(+)-Mg2+)ATPase to dansylated CaM. The presented results may indicate that binding of CaM gives rise to a novel conformational state of the enzyme, distinct from E1 and E2 forms of the Ca2+ pump.  相似文献   

14.
The calcium dependency of the Ca2+-pump ATPase of rat cardiac sarcolemma was investigated in the presence and absence of EGTA and EDTA in combination with two free Mg2+-ion concentrations. The results showed: that Mg2+-ions are not essential for the turnover of the Ca2+-pump ATPase; that the Ca2+-affinity is regulated by the concentration of the calcium-chelator complex present in the medium; that (Ca2+-Mg2+)-ATPase and Ca2+-ATPase are probably expressions of the same Ca2+-pump ATPase in the plasma membrane of the cell.  相似文献   

15.
Several crystal and NMR structures of calmodulin (CaM) in complex with fragments derived from CaM-regulated proteins have been reported recently and reveal novel ways for CaM to interact with its targets. This review will discuss and compare features of the interaction between CaM and its target domains derived from the plasma membrane Ca2+-pump, the Ca2+-activated K+-channel, the Ca2+/CaM-dependent kinase kinase and the anthrax exotoxin. Unexpected aspects of CaM/target interaction observed in these complexes include: (a) binding of the Ca2+-pump domain to only the C-terminal part of CaM (b) dimer formation with fragments of the K+-channel (c) insertion of CaM between two domains of the anthrax exotoxin (d) binding of Ca2+ ions to only one EF-hand pair and (e) binding of CaM in an extended conformation to some of its targets. The mode of interaction between CaM and these targets differs from binding conformations previously observed between CaM and peptides derived from myosin light chain kinase (MLCK) and CaM-dependent kinase IIalpha (CaMKIIalpha). In the latter complexes, CaM engulfs the CaM-binding domain peptide with its two Ca2+-binding lobes and forms a compact, ellipsoid-like complex. In the early 1990s, a model for the activation of CaM-regulated proteins was developed based on this observation and postulated activation through the displacement of an autoinhibitory or regulatory domain from the target protein upon binding of CaM. The novel structures of CaM-target complexes discussed here demonstrate that this mechanism of activation may be less general than previously believed and seems to be not valid for the anthrax exotoxin, the CaM-regulated K+-channel and possibly also not for the Ca2+-pump.  相似文献   

16.
Two spectroscopic techniques, circular dichroism and steady-state fluorescence, were employed in order to study conformational changes of the purified, detergent-solubilized (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes. Circular dichroism (CD) spectra in the peptide region were obtained from the purified (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes with the aim to investigate the secondary structure of the enzyme in the presence of calmodulin (CaM) or phosphatidylserine (PS), as well as in the E1 and E2 states. The E1 conformation was stabilized by 10 microM free Ca2+, while the E2 conformation was stabilized by 0.1 mM ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). It was found that the E1 and E2 states of the enzyme strikingly differed in their secondary structure (66% and 46% of calculated alpha-helix content, respectively). In the presence of Ca2+, PS decreased the helical content of the ATPase to 61%, while CaM to 55%. Quenching of intrinsic fluorescence of (Ca2+-Mg2+)-ATPase by acrylamide, performed in the presence of Ca2+, gave evidence for a single class of tryptophan residues with Stern-Volmer constant (KSV) of 10 M-1. Accessibility of tryptophan residues varied depending on the conformational status of the enzyme. Addition of PS and CaM decreased the KSV value to 7.6 M-1 and 8.5 M-1, respectively. In the absence of Ca2+, KSV was 7.0 M-1. KI and CsCl were less effective as quenchers. The fluorescence energy transfer between (Ca2+-Mg2+)-ATPase tryptophan residues and dansyl derivative of covalently labeled CaM occurred in the presence of EGTA, but was further promoted by Ca2+. It is concluded that the interaction of CaM and PS with (Ca2+-Mg2+)-ATPase results in different conformational states of the enzyme. CD and fluorescence spectroscopy allowed to distinguish these states from the E1 and E2 conformational forms of the ATPase.  相似文献   

17.
Studies were made on the direct effects of glycyrrhizin and its aglycone, glycyrrhetinic acid on the activities of (Na+ + K+)-ATPase and (Ca2+ + Mg2+)-ATPase, a membrane bound Na+ and Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney. Glycyrrhetinic acid inhibited the activity of the Na+-pump enzyme dose-dependently (IC50 = 1.5 x 10(-4) M), but had no effect on that of the Ca2+-pump enzyme of kidney BLM and homogenates. Glycyrrhizin also inhibited the Na+-pump enzyme activity but had less effect (IC50 = 2 x 10(-3) M). The effects of these compounds were due to competitive inhibition with ATP binding to the enzyme (Ki = 12 microM) and so were different from that of ouabain, which inhibits the Na+-pump by binding to its extracellular K+-binding site. The direct effect of glycyrrhetinic acid on the membrane may be important role in the multiple actions of licorice.  相似文献   

18.
The kinetics of Ca2+ activation of membrane-bound (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase EC 3.6.1.3) from human erythrocytes was studied. The ATPase from membrane prepared in the presence of 0.7-500muM Ca2+ showed positively cooperative behaviour and a Km for Ca2+ of between 1 and 4 muM. If the membranes were prepared in the absence of Ca2+ the Km increased, and an enzyme model with at least four calcium-binding sites accounted for the kinetic change assuming that one calcium-binding site decreased its affinity. Mg2+ or Mg-ATP could not replace Ca2+. Continuous-flow centrifugation involving a shear stress on membranes was necessary to obtain the high affinity ATPase activity. Using ordinary centrifugation the Ca2+-prepared membranes behaved as membranes prepared in the absence of Ca2+. The Ca2+-stimulated ATPase from membranes prepared without Ca2+ showed reduced maximum activity, but dialyzed, membrane-free hemolysates, whether prepared with Ca2+ present or not, recovered the activity when the hemolysate was present during the ATPase assay. It is suggested that the different Ca2+-affinities of the Ca2+-stimulated ATPase correspond to two different states of the calcium-pump.  相似文献   

19.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

20.
We have investigated the interaction of calmodulin (CaM) with Ras-p21 and the significance of this association. All Ras-p21 isoforms tested (H-, K-, and N-Ras) were detected in the particulate fraction of human platelets and MCF-7 cells, a human breast cancer cell line. In MCF-7 cells, H- and N-Ras were also detected in the cytosolic fraction. K-RasB from platelet and MCF-7 cell lysates was found to bind CaM in a Ca2+ -dependent but GTPgammaS-independent manner. The yeast two-hybrid analysis demonstrated that K-RasB binds to CaM in vivo. Incubation of isolated membranes from platelet and MCF-7 cells with CaM caused dissociation of only K-RasB from membranes in a Ca2+ -dependent manner. CaM antagonist, W7, inhibited dissociation of K-RasB. Addition of platelet or MCF-7 cytosol alone to isolated platelet membranes did not cause dissociation of K-RasB and only addition of exogenous CaM caused dissociation. The results suggest a potential role for Ca2+/CaM in the regulation of K-RasB function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号