首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
For recurrent patellar dislocation, reconstruction of the medial patellofemoral ligament (MPFL) with replacement autografts has often been performed but with only little data on the tensile properties of the MPFL to guide graft selection. With its complex anatomy and geometry, these properties are difficult to obtain. In this study, we showed how the orientation of the femur-MPFL-patella complex (FMPC) during uniaxial tensile testing can have a significant effect on its structural properties. Twenty two FMPCs were isolated from porcine stifle joints and randomly assigned to two groups of 11 each. For the first group, the specimens were loaded to failure with the patella oriented 30 degrees away from the direction of the applied load to mimic its orientation in situ, called natural orientation. In the second group, the patella was aligned in the direction of the tensile load, called non-natural orientation. The stiffness for the natural orientation group was 65±13 N/mm, 32% higher than that for the non-natural orientation group (50±17 N/mm; p<0.05). The ultimate loads were 438±128 N and 386±136 N, respectively (p>0.05). Ten out of 11 specimens in the natural orientation group failed at the femoral attachment (the narrowest portion of the MPFL) compared to 6 out of 11 in the non-natural orientation group. Our findings suggest that the specimen orientation that mimics the in-situ loading conditions of the MPFL should be used to obtain more representative data for the structural properties of the FMPC.  相似文献   

3.
4.
Ozdemir R  Kilinç H  Unlü RE  Uysal AC  Sensöz O  Baran CN 《Plastic and reconstructive surgery》2002,110(4):1134-47; discussion 1148-9
Plastic surgeons have sought to improve nasolabial folds, jowls, jaw lines, and cervical contour with face-lifting procedures that are abundant in the literature. The retaining ligaments of the face support facial soft tissue in normal anatomic position, resisting gravitational change. As this ligamentous system attenuates, facial fat descends into the plane between the superficial and deep facial fascia, and the stigmata of facial age develop. In this study, surgical correction of the retaining ligaments and plication of the superficial musculoaponeurotic system (SMAS) to reposition the structures that have descended with gravitation are discussed. The anatomy of the facial retaining ligaments was studied in 22 half-faces of 11 fresh cadavers, and the localization, extension, and width of the ligaments were examined macroscopically and histologically. Surgical correction of the retaining ligaments and plication of the SMAS have been accomplished in 27 face-lift patients with this anatomicohistologic study taken into consideration. There was hematoma in one patient at the cheek region and a permanent dimple caused by postoperative edema in two patients, with a localization of one zygomatic and two parotidomasseteric ligaments. In one patient, hypesthesia in the mandibular nerve region was seen, which remitted at 14 weeks. There were no other complications, and with a follow-up of 24 months, excellent aesthetic results and a high level of patient satisfaction were encountered.  相似文献   

5.
Temperature dependent behavior of the canine medial collateral ligament   总被引:1,自引:0,他引:1  
The temperature dependent tensile behavior of ligament was investigated from 2 degrees C to 37 degrees C. Nondestructive cyclic tests were performed on ten canine femur-medial collateral ligament-tibia (FMT) complexes at sequential temperatures of 22 degrees C, 22 degrees C, 27 degrees C, 32 degrees C, 37 degrees C, and again at 22 degrees C. The samples were rested at zero load between tests for sufficient time periods to allow for full recovery from the ligament's time and history dependent viscoelastic properties. Ten additional FMT complexes were sequentially tested in a similar fashion, but at temperatures of 22 degrees C, 22 degrees C, 2 degrees C, 6 degrees C, 14 degrees C, and 22 degrees C. All canine FMT complexes showed temperature dependent viscoelastic properties: the measured area of hysteresis decreased with increasing temperature; the cyclic load relaxation behavior plateaued to a higher value at lower temperatures; and the tensile load at a predetermined ligament substance strain level had an inversely proportional relationship with respect to temperature.  相似文献   

6.
There are disparate views on the effects of temperature on the mechanical properties of ligaments and tendons. We attempted to resolve the inconsistencies by testing the medial collateral ligaments of twelve, three-month old New Zealand white rabbits in both elastic-dominated and viscous-dominated tests between 25 degrees C and 55 degrees C. We found that in elastic-dominated monotonic loading, the loading portions of the load-extension curves were mathematically similar. Differences could be accounted for through a base-line shift of the origin caused by additional relaxation and thermal contraction/expansion of the apparatus and specimen. In tests where the viscous component of behavior was manifest, we found results similar to those of other investigators. Thus we conclude that in assessing the effects of temperature on the mechanical properties of tissues it is important to account for both temperature and initial positions of the apparatus and specimen, and to consider the effects of both relaxation and thermal contraction/expansion.  相似文献   

7.
This paper presents a technique whereby the canthal ligament can be identified through the periosteum without creating an external incision. Prior to releasing the tendon from the bones, the assistant will stretch the lateral canthal ligament while the surgeon places a stitch through the medial canthal ligament and tattoos the ligament and the underlying bone. After the forehead flap is mobilized and the ligament is detached from the bone by elevation of the periosteum, the previous stitch on the medial canthal ligament is pulled, which will provide a firmer consistency to the ligament, thereby facilitating the differentiation of the ligament from the surrounding soft tissue. Using this and the tract tattooed previously, the ligament can be identified easily without creating any external scars.  相似文献   

8.
The objectives of this study were to determine the longitudinal and transverse material properties of the human medial collateral ligament (MCL) and to evaluate the ability of three existing constitutive models to describe the material behavior of MCL. Uniaxial test specimens were punched from ten human cadaveric MCLs and tensile tested along and transverse to the collagen fiber direction. Using load and optical strain analysis information, the tangent modulus, tensile strength and ultimate strain were determined. The material coefficients for each constitutive model were determined using nonlinear regression. All specimens failed within the substance of the tissue. Specimens tested along the collagen fiber direction exhibited the typical nonlinear behavior reported for ligaments. This behavior was absent from the stress-strain curves of the transverse specimens. The average tensile strength, ultimate strain, and tangent modulus for the longitudinal specimens was 38.6 +/- 4.8 MPa, 17.1 +/- 1.5 percent, and 332.2 +/- 58.3 MPa, respectively. The average tensile strength, ultimate strain, and tangent modulus for the transverse specimens was 1.7 +/- 0.5 MPa, 11.7 +/- 0.9 percent, and 11.0 +/- 3.6 MPa, respectively. All three constitutive models described the longitudinal behavior of the ligament equally well. However, the ability of the models to describe the transverse behavior of the ligament varied.  相似文献   

9.
A strain transducer was developed which employs a magnetic field sensing device to detect linear displacement. The transducer was attached to the medial collateral ligament (MCL) of human autopsy specimens, minimally influencing their physiologic behavior. A strain 'map' of the MCL as a function of knee flexion (full extension to 120 degrees) both with and without abduction force was obtained. Our investigation revealed consistent differences in the strain patterns between proximal, middle and distal segments of the anterior and posterior borders of the MCL. Anatomic variations in the pattern of collagen fibers within the MCL, interactions between posterior oblique capsular fibers and the MCL, and the skeletal configuration may account for these varied strain patterns.  相似文献   

10.
The anatomy of the medial collateral ligament (MCL) complex consists of three identifiable passive restraining structures: the longitudinal fibres of the superficial medial collateral ligament (sMCL), the deep medial collateral ligament (dMCL), and the posteromedial capsule (PMC). The purpose of this study was to measure and compare the structural properties of these three individual structures. Eight human cadaveric knees (age 72-89 years, mean = 77 years, S.D. 5.3) were harvested and bone-ligament-bone tensile testing specimens prepared. After preconditioning, the specimens were extended to failure at 1000 mm/min in an Instron tensile testing machine. Ligament bundles failed either mid-substance or at their bony attachments. The ligament bundles had maximum loads of 534 N (sMCL), 194 N (dMCL), 425 N (PMC) and failed at 10.2, 7.1, and 12.0 mm mean extension, respectively. The maximum load and linear stiffness of the sMCL were significantly higher than those of the dMCL but not the PMC. The maximum load of the PMC was significantly higher than that of the dMCL; the linear stiffness of the PMC was higher than that of the dMCL but this did not reach statistical significance. The dMCL failed at a significantly lower extension than the other structures. The sMCL bundles that failed at their bony attachment were remounted using a freezing clamp fixture and again extended to failure, resulting in mid-substance failure at 884 N (74% higher). This study has shown that the PMC of the knee has comparable structural properties to the long superficial MCL and the short, deep MCL. In summary, the structural properties of the different component structures of the medial ligament complex indicate possible functional significance.  相似文献   

11.
The medial collateral (MCL) and the anterior cruciate ligament (ACL) of the rat's knee are frequently used in biomedical research and occasionally in ligament healing studies. The contralateral normal ligament serves as a control. In this study the presence of symmetry in the biomechanical properties of the MCL and the ACL was investigated. Bilateral femur-MCL-tibia and femur-ACL-tibia preparations were obtained from the hind limbs of sixty rats and were subjected to tensile testing to failure under the same loading conditions. Tensile load to failure, stiffness and energy absorption capacity were measured and the mode of failure was recorded. All biomechanical parameters were not significantly different between the two knees of the same animal, although significant individual variation was evident. The most common mechanism of failure was mid-substance tear. Symmetry seems to exist in the biomechanical properties of the MCL and the ACL in the rat knee. When ligament healing is evaluated, increased group size is necessary and the use of a normal control group may be advisable. The contralateral normal knee ligament may serve as a control when the properties of an injured ligament are evaluated and when the parameters of tensile testing failure under similar load conditions are applied.  相似文献   

12.
13.
14.
Dermatan and chondroitin sulfate glycosaminoglycans (GAGs) comprise over 90% of the GAG content in ligament. Studies of their mechanical contribution to soft tissues have reported conflicting results. Measuring the transient compressive response and biphasic material parameters of the tissue may elucidate the contributions of GAGs to the viscoelastic response to deformation. The hypotheses of the current study were that digestion of sulfated GAGs would decrease compressive stress and aggregate modulus while increasing the permeability of porcine medial collateral ligament (MCL). Confined compression stress relaxation experiments were carried out on porcine MCL and tissue treated with chondroitinase ABC (ChABC). Results were fit to a biphasic constitutive model to derive permeability and aggregate modulus. Bovine articular cartilage was used as a benchmark tissue to verify that the apparatus provided reliable results. GAG digestion removed up to 88% of sulfated GAGs from the ligament. Removal of sulfated GAGs increased the permeability of porcine MCL nearly 6-fold versus control tissues. Peak stress decreased significantly. Bovine articular cartilage exhibited the typical reduction of GAG content and resultant decreases in stress and modulus and increases in permeability with ChABC digestion. Given the relatively small amount of GAG in ligament (<1% of tissue dry weight) and the significant change in peak stress and permeability upon removal of GAGs, sulfated GAGs may play a significant role in maintaining the apposition of collagen fibrils in the transverse direction, thus supporting dynamic compressive loads experienced by the ligament during complex joint motion.  相似文献   

15.
16.
The retaining ligaments of the cheek   总被引:7,自引:0,他引:7  
The zygomatic ligaments (McGregor's patch) anchor the skin of the cheek to the inferior border of the zygoma just posterior to the origin of the zygomaticus minor muscle. The mandibular ligaments tether the overlying skin to the anterior mandible. Both these ligaments are obstacles to surgical maneuvers intended to advance the overlying skin. They also restrain the facial skin against gravitational changes, and they delineate the anterior border of the "jowl" area. The platysma-auricular ligament is a thin fascial sheet that extends from the posterosuperior border of the platysma and that is intimately attached to the periauricular skin; it serves as a surgical guide to the posterosuperior border of the platysma. The anterior platysma-cutaneous ligaments are variable fascial condensations that anchor the SMAS and platysma to the dermis. They can cause anatomic disorientation with dissection of false planes into the dermis. These four ligaments are useful as anatomic landmarks during facial dissections. The tethering effects of the zygomatic and mandibular ligaments must be interrupted if a maximum upward movement of the facial skin is desired.  相似文献   

17.
Decorin and its associated glycosaminoglycan (GAG) side chain, dermatan sulfate (DS), play diverse roles in soft tissue formation and potentially aid in the mechanical integrity of the tissue. Deeper understanding of the distribution and orientation of the GAGs on a microscopic level may help elucidate the structure/function relationship of these important molecules. The hypothesis of the present study was that sulfated GAGs are aligned with transversely isotropic material symmetry in human medial collateral ligament (MCL) with the collagen acting as the axis of symmetry. To test the hypothesis, sulfated GAGs were visualized using transmission electron microscopy (TEM). Three orthogonal anatomical planes were examined to evaluate GAG distributions against symmetry criteria. GAG populations were differentiated using targeted enzyme digestion. Results suggest that sulfated GAGs including DS, chondroitin sulfates A and C, as well as other sub-populations assume transversely isotropic distributions in human MCL. Sulfated GAGs in the plane normal to the collagen axis were found to be isotropic with no preferred orientation. GAGs in the two planes along the collagen axis did not statistically differ and exhibited apparent bimodal distributions, favoring orthogonal distributions with over half at other angles with respect to collagen. A previously developed model, GAGSim3D, was used to interpret potential TEM artifacts. The data collected herein provide refined inputs to micro-scale models of the structure/function relationship of sulfated GAGs in soft tissues.  相似文献   

18.
The metabolism of the chondroitin/dermatan sulfate (CS/DS) proteoglycans (PGs) decorin and biglycan is markedly altered during short-term (3-6 weeks) and long-term (40 weeks-2 years) repair of surgically ruptured medial collateral ligaments from mature rabbits. A PG-rich extracellular matrix accumulates in injury gaps by 3 weeks postsurgery and extends into tissue regions containing the original ligaments, and elevated PG levels remain apparent up to 2 years postinjury. CS/DS PGs were prepared from such ligaments and identified after SDS-polyacrylamide gel electrophoresis by Alcian blue staining or immunoblotting. In normal ligaments, decorin is the most abundant proteoglycan (accounting for approximately 80% of the total); the remainder is biglycan and a large PG, possibly versican. In repairing ligaments, decorin is barely detected, but instead a large proteoglycan and abundant amounts of biglycan accumulate. Biglycan is present in two forms in repairing ligaments, and they can be separated on SDS-PAGE into 200- and 140-kDa forms. The slower migrating species is absent in normal ligaments and may represent a different glycoform (containing either a single or two short chondroitin/dermatan sulfate chains) of biglycan. Alteration in PG expression and posttranslational processing during medial collateral ligament repair are similar to those reported for repair and scar formation of other connective tissues. The accumulation of biglycan observed here may interfere with proper collagen network remodeling and may lead to persistent inflammatory and matrix turnover processes, thus preventing restoration of a long-term functional ligament tissue.  相似文献   

19.
This study quantified the apparent and intrinsic hydraulic permeability of human medial collateral ligament (MCL) under direct permeation transverse to the collagen fiber direction. A custom permeation device was built to apply flow across cylindrical samples of ligament while monitoring the resulting pressure gradient. MCLs from 5 unpaired human knees were used (donor age 55 +/- 16 yr, 4 males, 1 female). Permeability measurements were performed at 3 levels of compressive pre-strain (10%, 20% and 30%) and 5 pressures (0.17, 0.34, 1.03, 1.72 and 2.76 MPa). Apparent permeability was determined from Darcy's law, while intrinsic permeability was determined from the zero-pressure crossing of the pressure-permeability curves at each compressive pre-strain. Resulting data were fit to a finite deformation constitutive law [Journal of Biomechanics 23 (1990) 1145-1156]. The apparent permeability of human MCL ranged from 0.40 +/- 0.05 to 8.60 +/- 0.77 x 10(-16) m(4)/Ns depending on pre-strain and pressure gradient. There was a significant decrease in apparent permeability with increasing compressive pre-strain (p=0.024) and pressure gradient (p<0.001), and there was a significant interaction between the effects of compressive pre-strain and pressure (p<0.001). Intrinsic permeability was 14.14 +/- 0.74, 6.30 +/- 2.13 and 4.29 +/- 1.71 x 10(-16) m(4)/Ns for compressive pre-strains of 10%, 20% and 30%, respectively. The intrinsic permeability showed a faster decrease with increasing compressive pre-strain than that of bovine articular cartilage. These data provide a baseline for investigating the effects of disease and chemical modification on the permeability of ligament and the data should also be useful for modeling the poroelastic material behavior of ligaments.  相似文献   

20.
Testing environment is an important factor in the outcome of mechanical tests on connective tissue. The purpose of this investigation was to determine the effect of ligament water content on ligament mechanical behaviour by altering the test environment. Water content of medial collateral ligament (MCLs) from 19 three-month-old New Zealand White rabbits was varied in subsets of ligaments pairs by means of immersion in 2, 10 or 25% sucrose or 0.9% phosphate-buffered saline (PBS) solutions for 1 h. One knee joint was cycled 50 times in the designated solution (experimental), while the contralateral knee (uncycled control) was simultaneously soaked in the same tank. Following cycling, the water contents of both test and control ligaments were determined. Water contents of 22 normal MCLs were determined immediately post-sacrifice and served as 'normal water content' controls. Normalized peak cyclic load changes were used as a measure of the viscoelastic behaviour of each MCL. Results demonstrated that only ligaments soaked (but not cycled) in a 10% sucrose solution had water contents (60.5 +/- 2.5%) which were statistically similar to the 22 fresh normal MCLs (63.9 +/- 6.0%). Ligaments soaked in PBS (74.0 +/- 1.3%) or 2% sucrose (69.2 +/- 2.3%) had significantly higher water contents compared to fresh normal MCLs. Ligaments with higher water contents (e.g. soaked in PBS or 2% sucrose) demonstrated greater cyclic load relaxation compared to ligaments with lower contents (e.g. soaked in 25 or 10% sucrose). Different fluid test environments can significantly alter ligament water content and, in turn, significantly affect ligament viscoelastic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号