首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 X 10(-8) M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5 X 10(-8) M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+. Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+. Preincubation of enzyme with 15 microM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 X 10(-7) M propranolol and 5 X 10(-8) M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 X 10(-5) M coenzyme A in combination with 5 X 10(-8) M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

2.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

3.
GM1对肌质网Ca~(2+)-ATPase活性及膜流动性的影响   总被引:2,自引:0,他引:2  
外源性GM1对肌质网Ca2+-ATPase的水解及转运活性都有明显的抑制作用.在GM1浓度为0~8nmol/mg蛋白质范围内抑制作用具有浓度依赖性.当GM1浓度达到8nmol/mg蛋白质时,酶活性受到最大抑制,此时水解活性降低51%,转运活性降低49%.荧光偏振测定结果表明:GM1参入后,肌质网膜流动性降低.  相似文献   

4.
The antioxidant nordihydroguaiaretic acid (NDGA) inhibited the different sarco/endoplasmic reticulum Ca2+-ATPase isoforms found in skeletal muscle and blood platelets. For the sarcoplasmic reticulum, but not for the blood platelets Ca2+-ATPase, the concentration of NDGA needed for half-maximal inhibition was found to vary depending on the substrate used and its concentration in the assay medium. The phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase by ATP and by Pi were both inhibited by NDGA. In leaky vesicles, measurements of the ATP Pi exchange showed that NDGA increases the affinity for Ca2+ of the E2 conformation of the enzyme, which has low affinity for Ca2+. The effects of NDGA on the Ca2+-ATPase were not reverted by the reducing agent dithiothreitol nor by the lipid-soluble antioxidant butylated hydroxytoluene.  相似文献   

5.
Effect of tricyclohexylhydroxytin (plictran) on Ca2+-ATPase activity was studied in rat brain synaptosomes under in vitro and in vivo conditions. Plictran inhibited basal Ca2+-ATPase activity with an IC50 value of 6 nM suggesting its interaction with calcium transport phenomenon. Plictran inhibited calmodulin (CaM) activated Ca2+-ATPase in a concentration-dependent manner. A complete reversal of calmodulin activation of Ca2+-ATPase was observed with 2-3 nM plictran. A 50 per cent decrease of CaM activated Ca2+-ATPase was observed with 0.5 nM plictran, a concentration at which no significant effect was observed on basal enzyme activity. Of all the brain fractions studied, calmodulin levels in P2 fractions alone were reduced significantly to about 75 per cent of control values in plictran treated rats. The synaptosomal Ca2+-ATPase was also decreased by 35 per cent, 42 per cent and 65 per cent in 10, 20 and 40 mg plictran kg-1 day-1 treated rats for 3 days respectively. The activity levels of Ca2+-ATPase in 10 and 20 mg plictran kg-1 day-1 treated rats were restored to normal level by exogenously added calmodulin. These results suggest that plictran may disrupt synaptic function by altering calcium and calmodulin regulated processes in the central nervous system.  相似文献   

6.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

7.
Sarcoplasmic reticulum preparations from rabbit cardiac and fast skeletal muscle react differentially with low concentrations of 1-fluoro- and 1,5-difluoro-2,4-dinitrobenzene. Dinitrophenylation of cardiac sarcoplasmic reticulum by 1-fluoro-2,4-dinitrobenzene is not affected by Ca2+ and is limited to the lipoprotein-lipid region. This contrasts sharply with the predominant Ca2+-dependent dinitrophenylation of the ATPase protein of rabbit skeletal sarcoplasmic reticulum by this reagent. Formation of non-serial high mol. wt. oligomers by 1,5-difluoro-2,4-dinitrobenzene is significantly greater in cardiac than in skeletal vesicles. Substrate MgATP2- does not protect rabbit cardiac sarcoplasmic reticulum ATPase activity or Ca2+ uptake from dinitrophenylation when monofunctional and bifunctional reagents are used. Chemical differences in the overall structure of the two kinds of membrane preparations can be ascertained from a comparison of the effects of Ca2+ and MgATP2- on the reactivity of these reagents.  相似文献   

8.
Ca2+ uptake into the endoplasmic reticulum (ER) is mediated by Ca2+ ATPase isoforms, which are all selectively inhibited by nanomolar concentrations of thapsigargin. Using ATP/Mg2+-dependent 45Ca2+ transport in rat brain microsomes, tissue sections, and permeabilized cells, as well as Ca2+ imaging in living cells we distinguish two ER Ca2+ pools in the rat CNS. Nanomolar levels of thapsigargin blocked one component of brain microsomal 45Ca2+ transport, which we designate as the thapsigargin-sensitive pool (TG-S). The remaining component was only inhibited by micromolar thapsigargin, and thus designated as thapsigargin resistant (TG-R). Ca2+ ATPase and [32P]phosphoenzyme assays also distinguished activities with differential sensitivities to thapsigargin. The TG-R Ca2+ uptake displayed unique anion permeabilities, was inhibited by vanadate, but was unaffected by sulfhydryl reduction. Ca2+ sequestered into the TG-R pool could not be released by inositol-1,4,5-trisphosphate, caffeine, or cyclic ADP-ribose. The TG-R Ca2+ pool had a unique anatomical distribution in the brain, with selective enrichment in brainstem and spinal cord structures. Cell lines that expressed high levels of the TG-R pool required micromolar concentrations of thapsigargin to effectively raise cytoplasmic Ca2+ levels. TG-R Ca2+ accumulation represents a distinct Ca2+ buffering pool in specific CNS regions with unique pharmacological sensitivities and anatomical distributions.  相似文献   

9.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

10.
S100A1, a Ca2+-sensing protein of the EF-hand family, is most highly expressed in myocardial tissue, and cardiac S100A1 overexpression in vitro has been shown to enhance myocyte contractile properties. To study the physiological consequences of S100A1 in vivo, transgenic mice were developed with cardiac-restricted overexpression of S100A1. Characterization of two independent transgenic mouse lines with approximately 4-fold overexpression of S100A1 in the myocardium revealed a marked augmentation of in vivo basal cardiac function that remained elevated after beta-adrenergic receptor stimulation. Contractile function and Ca2+ handling properties were increased in ventricular cardiomyocytes isolated from S100A1 transgenic mice. Enhanced cellular Ca2+ cycling by S100A1 was associated both with increased sarcoplasmic reticulum Ca2+ content and enhanced sarcoplasmic reticulum Ca2+-induced Ca2+ release, and S100A1 was shown to associate with the cardiac ryanodine receptor. No alterations in beta-adrenergic signal transduction or major cardiac Ca2+-cycling proteins occurred, and there were no signs of hypertrophy with chronic cardiac S100A1 overexpression. Our findings suggest that S100A1 plays an important in vivo role in the regulation of cardiac function perhaps through interacting with the ryanodine receptor. Because S100A1 protein expression is down-regulated in heart failure, increasing S100A1 expression in the heart may represent a novel means to augment contractility.  相似文献   

11.
Ionomycin, a recently discovered calcium ionophore, inhibits the ATP-dependent active Ca2+ transport of rabbit sarcoplasmic reticulum vesicles at concentrations as low as 10(-8) to 10(-6) M. The effect is due to an increase in the Ca2+ permeability of the membrane which is also observed on liposomes. The inhibition of Ca2+ uptake is accompanied by an increase in the Ca2+-sensitive ATPase activity of sarcoplasmic reticulum vesicles.  相似文献   

12.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

13.
To investigate the role of Ca2+/calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca2+/calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in cardiac sarcoplasmic reticulum. This resulted in a 59.7 and 73.6% decrease in phospholamban phosphorylation at threonine 17 under basal and beta-adrenergic stimulated conditions without changing phospholamban phosphorylation at serine 16. Sarcoplasmic reticulum Ca2+ uptake assays showed that the Vmax was decreased by approximately 30% although the apparent affinity for Ca2+ was unchanged in heterozygous hearts. The in vivo measurement of cardiac function showed no significant reductions in positive and negative dP/dt, but a moderate 18% decrease in dP/dt40, indicative of isovolumic contractility, and a 26.1% increase in the time constant of relaxation (tau) under basal conditions. The changes in these parameters indicate a moderate cardiac dysfunction in transgenic mice. Although the 3 and 4-month-old transgenic mice displayed no overt signs of cardiac disease, when stressed by gestation and parturition, the 7-month-old female mice develop dilated heart failure, suggesting the important role of Ca2+/calmodulin-dependent kinase II pathway in the development of cardiac disease.  相似文献   

14.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   

15.
Effects of Kainic Acid on Brain Calcium Fluxes Studied In Vivo and In Vitro   总被引:7,自引:6,他引:1  
The effect of in vivo administration of kainic acid into the rabbit hippocampus was studied with brain dialysis and subsequent determination of the Ca2+ concentration in the dialysate. When included in the perfusing medium, kainic acid as well as veratridine induced a decrease in extracellular Ca2+. The effect of kainic acid (but not of veratridine) was insensitive to tetrodotoxin. In vitro studies revealed no effect of kainic acid on 45Ca2+ uptake by isolated astrocytes, but showed an enhancement of synaptosomal 45Ca2+ accumulation. This was, however, only 25% of the stimulatory effect of high K+ depolarization. Glutamate activated synaptosomal Ca2+ uptake, whereas dihydrokainate had no effect. The uptake evoked by kainate and glutamate was independent of the K+ level in the medium which indicates the involvement of other than voltage-sensitive Ca2+ channels. The results confirm previous finding that kainic acid promotes the uptake of Ca2+ in brain cells. Kainate affects Ca2+ fluxes pre- and postsynaptically. Presynaptic Ca2+ influx may be mediated by chemically gated mechanisms.  相似文献   

16.
ATP-dependent Ca2+ uptake by brain microsomes was classified into two fractions according to the sensitivity to saponin. Properties of each fraction of Ca2+ uptake were examined and compared with those of inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum. The concentration of saponin for 50% inhibition (IC50) of major saponin-sensitive Ca2+ uptake was 11 micrograms/ml, and this uptake was enhanced by calmodulin. The minor saponin-insensitive Ca2+ uptake fraction (IC50; 90 micrograms/ml) was not affected by calmodulin but was enhanced by oxalate or 0.1 M KCl. The IC 50 of saponin for inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum was 11.3 and 114.8 micrograms/ml, respectively. A characteristic ring-like saponin-cholesterol micellar structure was observed electron microscopically in most membrane vesicles of brain microsomes and erythrocyte membrane vesicles but not in the cardiac sarcoplasmic reticulum. These observations indicate that saponin-sensitive and insensitive Ca2+ uptake was derived from plasma membranes and endoplasmic reticulum, respectively. Saponin proved useful for distinguishing the Ca2+ transport activity of plasma membrane from the Ca2+ uptake of other cellular organelles in the membrane preparations.  相似文献   

17.
18.
1. The translocation of 45Ca2+ in vesicles reconstituted with purified Ca2+ ATPase of sarcoplasmic reticulum and phospholipids was dependent on ATP and varied greatly with the composition of the phospholipids. 2. In contrast to sarcoplasmic reticulum fragments, the reconstituted vesicles were impermeable to 14C-labeled oxalate, 3H- or 32P-labeled ATP, or 32P-i. There was no translocation of phosphate from gamma-labeled ATP during Ca2+ uptake. These results are inconsistent with some current formulations of the mechanism of pump action. 3. Reversal of the Ca2+ pump and generation of ATP and ADP and P-i was observed when vesicles loaded with Ca2+ were exposed to ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. 4. Experiments on the formation of phosphoenzyme with 32P-labeled ATP showed that most if not all functional ATPase molecules in the reconstituted vesicles were oriented in the same direction, as in the case of sarcoplasmic reticulum fragments.  相似文献   

19.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

20.
The role of reactive sulfhydryl groups of sarcoplasmic reticulum ATPase has been investigated. Incubation of ATPase with 17 mol o-iodosobenzoic acid per mol ATPase results in a 15% inhibition of Ca2+ uptake with only a 5% loss of ATPase activity. When ATPase is treated with 15 mol KMnO4 per mol ATPase, Ca2+ uptake is completely inhibited. From the measurement of remaining SH groups using 5,5'-dithiobis-(2-nitrobenzoic acid), it is found that the oxidation of approximately four SH groups per ATPase molecule with KMnO4 leads to a complete loss of Ca2+ uptake, while the oxidation of five SH groups per ATPase with o-iodosobenzoic acid results in only 15% inhibition of Ca2+ uptake. The results of amino acid analysis indicate that KMnO4 oxidizes the reactive SH groups to sulfonic acid groups. Among the five o-iodosobenzoic acid-reactive SH groups, at least one shows a distinct Ca2+ dependence. Addition of o-iodosobenzoic acid to the reaction medium containing KMnO4 does not increase the number of oxidized SH groups, indicating that both o-iodosobenzoic acid and KMnO4 oxidize the same SH groups of the enzyme. The different effects of two oxidizing agents on sarcoplasmic reticulum ATPase eliminate the possibility of direct involvement of SH group(s) in the ATPase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号