共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases 总被引:20,自引:0,他引:20
Rainer Borriss Knut Buettner Pekka Maentsaelae 《Molecular & general genetics : MGG》1990,222(2-3):278-283
Summary The nucleotide sequence of an 852 base pair (bp) DNA fragment containing the entire gene coding for thermostable beta- 1,3-1,4-glucanase ofBacillus macerans has been determined. ThebglM gene comprises an open reading frame (ORF) of 711 by (237 codons) starting with ATG at position 93 and extending to the translational stop codon TAA at position 804. The deduced amino acid sequence of the mature protein shows 70% homology to published sequences of mesophilic beta- 1,3-1,4-glucanases fromB. subtilis andB. amyloliquefaciens. The sequence coding for mature beta-glucanase is preceded by a putative signal peptide of 25 amino acid residues, and a sequence resembling a ribosome-binding site (GGAGG) before the initiation codon. By contrast with the processed protein, the N-terminal amino acid sequence constituting the putative leader peptide bears no or only weak homology to signal peptides of mesophilicBacillus endo-beta-glucanases. TheB. macerans signal peptide appears to be functional in exporting the enzyme to the periplasm inE. coli. More than 50% of the whole glucanase activity was localized in the periplasmic space and in the supernatant. Whereas homology to endo-1,4-beta-glucanases is completely lacking, a weak amino acid homology between the sequence surrounding the active site of phage T4 lysozyme and a sequence spanning residues 126 through 161 ofB. macerans endo-beta-glucanase could be identified. 相似文献
5.
Finding microRNA targets in the coding region is difficult due to the overwhelming signal encoding the amino acid sequence. Here, we introduce an algorithm (called PACCMIT-CDS) that finds potential microRNA targets within coding sequences by searching for conserved motifs that are complementary to the microRNA seed region and also overrepresented in comparison with a background model preserving both codon usage and amino acid sequence. Precision and sensitivity of PACCMIT-CDS are evaluated using PAR-CLIP and proteomics data sets. Thanks to the properly constructed background, the new algorithm achieves a lower rate of false positives and better ranking of predictions than do currently available algorithms, which were designed to find microRNA targets within 3′ UTRs. 相似文献
6.
Doxey AC Yaish MW Moffatt BA Griffith M McConkey BJ 《Molecular biology and evolution》2007,24(4):1045-1055
Plant beta-1,3-glucanases (beta-1,3-Gs) (E.C. 3.2.1.39) comprise large, highly complex gene families involved in pathogen defense as well as a wide range of normal developmental processes. In spite of previous phylogenetic analyses that classify beta-1,3-Gs by sequence relatedness, the functional evolution of beta-1,3-Gs remains unclear. Here, expression and phylogenetic analyses have been integrated in order to investigate patterns of functional divergence in the Arabidopsis beta-1,3-G gene family. Fifty beta-1,3-G genes were grouped into expression classes through clustering of microarray data, and functions were inferred based on knowledge of coexpressed genes and existing literature. The resulting expression classes were mapped as discrete states onto a phylogenetic tree and parsimony reconstruction of ancestral expression states was performed, providing a model of expression divergence. Results showed a highly nonrandom distribution of developmental expression states in the phylogeny (P = 0.0002) indicating a significant degree of coupling between sequence and developmental expression divergence. A weaker, yet significant level of coupling was found using stress response data, but not using hormone-response or pathogen-response data. According to the model of developmental expression divergence, the ancestral function was most likely involved in cell division and/or cell wall remodeling. The associated expression state is widely distributed in the phylogeny, is retained by over 25% of gene family members, and is consistent with the known functions of beta-1,3-Gs in distantly related species and gene families. Consistent with previous hypotheses, pathogenesis-related (PR) beta-1,3-Gs appear to have evolved from ancestral developmentally regulated beta-1,3-Gs, acquiring PR function through a number of evolutionary events: divergence from the ancestral expression state, acquisition of pathogen/stress-responsive expression patterns, and loss of the C-terminal region including the glycosylphosphatidylinisotol (GPI)-anchoring site thus allowing for extracellular secretion. 相似文献
7.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed. 相似文献
8.
9.
10.
11.
12.
13.
Bacillus circulans IAM1165 produces isoforms of beta-1,3-glucan-hydrolases. Of these enzymes, the 42-kDa enzyme BgIM degrades Aspergillus oryzae cell walls the most actively. A gene coding for a BgIM precursor consisting of 411 amino acid residues was cloned. The 27 N-terminal amino acid sequence of the precursor is a signal peptide. The 141 C-terminal amino acid sequence showed a motif of carbohydrate-binding module family 13. This domain bound to pachyman, lichenan, and A. oryzae cell walls. The central domain showed a bacterial beta-1,3-glucan-hydrolase motif belonging to glycosyl hydrolase family 16. By removal of the C-terminal domain in the IAM1165 culture, mature BglM was processed to several 27-kDa fragments that hydrolyze a soluble beta-1,3-glucan. 相似文献
14.
15.
16.
Abstract An integrating plasmid has been used to mutagenise the gene coding for endo-β-1,3-1,4-glucanase of Bacillus subtilis . The gene, named bgl , has been mapped by PBS-1 transduction to the sacA-pureA region of the B. subtilis chromosome and is closely linked to the hutP 1 locus. The order of markers in this region is sacA 321- thiC 5- bgl - hutP 1- purA 16. 相似文献
17.
18.
Shinya T Gondo S Iijima H Hanai K Matsuoka H Saito M 《Bioscience, biotechnology, and biochemistry》2004,68(6):1265-1272
Stress-induced cell-lytic activity was found in tobacco BY-2 cells treated with various stresses. Among 14 stresses, an elicitor fraction isolated from Alternaria alternata showed the highest inducing activity. Cell-lytic activity increased for 72 h even in the control sample, treated with distilled water, and several isozymes of beta-1,3-glucanases and chitinases were found to be involved in it. In contrast, cell-lytic activity in BY-2 cells treated with a fungal elicitor reached a higher level after 60 h. The principal enzymes specifically involved in this stress-induced portion are speculated to be basic beta-1,3-glucanases. A class I beta-1,3-glucanase gene (glu1) was found to be the specific gene for the stress-induced cell-lytic activity. Its expression became observable at 24 h, and the intensity reached a maximum at about 60-72 h. The glu1 was thus assigned as a late gene. Its role in the stress response is discussed in conjunction with earlier genes such as chitinases. 相似文献
19.
20.
Cloning and expression in Escherichia coli of the gene for an Arthrobacter beta-(1----3)-glucanase. 总被引:1,自引:2,他引:1
When inserted in the correct orientation at the BamHI site of plasmid YRp7, an 8.6-kilobase BamHI fragment of Arthrobacter sp. strain YCWD3 DNA gave Escherichia coli HB101 cells harboring the recombinant plasmid pBX20 the ability to lyse bakers' yeast cell walls or bakers' yeast glucan in agar medium. An extract of the transformed E. coli cells contained an endo-beta-(1----3)-glucanase with the same activity pattern as that of glucanase I produced by Arthrobacter sp. strain YCWD3. Although part of the glucanase activity was contributed by apparently defective molecules, two protein species were found which had high lytic activity on yeast cell walls and adsorbed to microcrystalline cellulose, and both had a single constituent polypeptide with a molecular weight of about 55,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In these properties the protein species were indistinguishable from those glucanase I protein species of Arthrobacter sp. strain YCWD3 which we believe are nearly the intact molecule. We conclude that the cloned fragment of Arthrobacter sp. strain YCWD3 DNA contains the structural gene for glucanase I. A recombinant plasmid obtained by subcloning a PstI fragment of pBX20 into pBR322 caused the transformed E. coli cells to produce apparently defective glucanase molecules only. This observation serves as additional supporting evidence for our conclusion. 相似文献