首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Crop germplasm collections contain a considerable percentage of misclassified accessions which may affect the use of germplasm for agricultural crop improvement. The objective of this study was to determine if random amplified polymorphic DNA (RAPD) analysis could be used to reclassify misclassified Triticum accessions. Twelve accessions suspected to be misclassified, based on morphological characters, as either macha or vavilovii wheat were studied using RAPD and cytological analyses. In the RAPD analysis, a dendrogram, based on Jaccard genetic similarity coefficients, grouped 5 dicoccum-like, 1 timopheevii-like, and 6 monococcum-like accessions with Triticum dicoccum, T. timopheevii, and T. monococcum accessions, respectively. These results were confirmed by the cytological analysis. A RAPD marker specific to the D genome was also detected. This study suggests that RAPD analysis can be used to classify germplasm and to distinguish some species in Triticum. Received: 12 June 1998 / Accepted: 18 August 1998  相似文献   

2.
Random amplified polymorphic DNA (RAPD) was assessed for its suitability as a tool to be used in the identification of taxa from the genusStylosanthes (Fabaceae, Papilionoideae, Aeschynomeneae). Five random primers were used to fingerprint accessions from seven species in the genus, and generated RAPD profiles that were species-specific. Data were used to examine evolutionary relationships between taxa, employing both clustering and ordination techniques, and the results were compared with those from a previous cladistic analysis of chloroplast DNA (cpDNA) restriction fragments. Both multivariate approaches indicated relationships that were generally similar to those obtained by RFLP analysis of cpDNA. However, while cluster analysis grouped together all accessions within species, ordination placed certain accessions ofS. humilis, S. macrocephala andS. capitata into separate groups. Experiments to test the assumed homology of comigrating RAPDs estimated 85.7% homology for accessions within species, and 53.8% homology for accessions between species. The value of RAPD data in systematics is discussed.  相似文献   

3.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

4.
The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lotus was evaluated for several geographically dispersed accessions of four diploid Lotus species, L. tennis Waldst. et Kit, L. alpinus Schleich., L. japonicus (Regel) Larsen, and L. uliginosus Schkuhr and for the tetraploid L. corniculatus L., in order to ascertain whether RAPD data could offer additional evidence concerning the origin of the tetraploid L. corniculatus. Clear bands and several polymorphisms were obtained for 20 primers used for each species/accession. The evolutionary pathways among the species/accessions presented in a cladogram were expressed in terms of treelengths giving the most parsimonious reconstructions. Accessions within the same species grouped closely together. It is considered that L. uliginosus which is most distantly related to L. corniculatus, may be excluded as a direct progenitor of L. corniculatus, confirming previous results from isoenzyme studies. Lotus alpinus is grouped with accessions of L. corniculatus, which differs from previous studies. With this exception, these findings are in agreement with previous experimental studies in the L. corniculatus group. The value of the RAPD data to theories on the origin of L. corniculatus is discussed.  相似文献   

5.
The genetic diversity of nuclear genomes of five Daucus species and seven Daucus carota L. subspecies involving 26 accessions was characterized with random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP). AFLP produced more than four times as many discrete bands per reaction compared with RAPD analysis, while both AFLP and RAPD basically led to similar conclusions. The dendrograms constructed with both RAPD and AFLP revealed that all accessions of D. carota were grouped into a major cluster delimited from other Daucus species, in good agreement with the classification by morphological char-acteristics. All accessions of cultivated carrots [(D. carota ssp. sativus (Hoffm.) Arcang.] were clustered in the same group while the variation within D. carota was relatively extensive. Genetic diversity of mitochondrial genomes was also documented with RAPD for the same accessions. The mitochondrial dendrogram differed from that of the nuclear genome, suggesting that nuclear and mitochondrial genomes of some accessions had separate evolutionary histories. Received: 20 September 1997 / Revision received: 19 January 1998 / Accepted: 28 March 1998  相似文献   

6.
The phylogenetic relationships among the three species of Tinospora found in India are poorly understood. Morphology does not fully help to resolve the phylogeny and therefore a fast approach using molecular analysis was explored. Two molecular approaches viz Random Amplified Polymorphic DNA (RAPD) assay and restriction digestion of ITS1-5.8S-ITS2 rDNA (PCR-RFLP) were used to evaluate the genetic similarities between 40 different accessions belonging to three species. Of the 38 random primers used only six generated the polymorphism, while as three out of 11 restriction enzymes used gave polymorphic restriction patterns. The average proportion of polymorphic markers across primers was 95%, however restriction endonucleases showed 92% polymorphism. RAPD alone was found suitable for the species diversions. In contrast PCR- RFLP showed bias in detecting exact species variation. The correlation between the two markers was performed by Jaccard's coefficient of similarity. A significant (r= 0.574) but not very high correlation was obtained. Further to authenticate the results obtained by two markers, sequence analysis of ITS region of ribosomal DNA (ITS1 and ITS2, including 5.8S rDNA) was performed. Three independent clones of each species T. cordifolia, T. malabarica and T. crispa were sequenced. Phylogenetic relationship inferred from ITS sequences is in agreement with RAPD data.  相似文献   

7.
Genetic relationships among 125 Spanish melon (Cucumis melo L.) accessions from a Spanish germplasm collection were assessed using a standard molecular-marker array consisting of 34 random amplified polymorphic DNA (RAPD) markers bands (19 primers) and 72 reference accessions drawn from previous studies. The reference accession array consisted of a broad range [Japanese (19) Crete (17), African (15), and USA and Europe (US/EU, 21)] of horticultural groupings (Group Cantalupensis, Group Conomon, Group Inodorus, Group Flexuosus, and Group Chito), and of melon market classes (e.g., Charentais, U.S. Western and European Shipper types, Ogen, and Galia, Honeydew, and Casaba). Spanish melon accessions (largely Casaba, Group Inodorus) were genetically distinct from the reference accessions and other Group Inodorus melons of different origins. Most African accessions showed common genetic affinities, and grouped with the Group Chito and the Group Conomon accessions examined. Those accession groupings were distinct from all other accessions belonging to Group Cantalupensis, Flexuosus, and Inodorus accessions originating from Crete, Japan, Europe, and the U.S. Genetic diversity was highest in accessions of African origin and lowest in accessions of Spanish origin. Additional RAPD markers (49 primers, 141 bands) and 22 selected agronomic traits (quantitative and qualitative) were then used to assess the genetic diversity among Spanish accessions. While cluster analysis using fruit characteristics grouped accessions into cultivars, RAPD-based genetic-distance estimate did not provide consistent accession groupings either by cultivar or geographic origin. While the highest level of polymorphism was detected among melons originating from the central region of Spain, and in the Rochet cultivar, accessions from the Andalucía region and Green cultivars were comparatively less diverse. These results indicate that the Spanish melon accessions could be used to broaden the genetic base of local and foreign Casaba germplasm, to enhance the genetic diversity of U.S and European commercial melon germplasm, and to delineate collection strategies for acquisition of additional Spanish landraces.Communicated by C. MöllersMention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

8.
Broadening of the genetic base and systematic exploitation of heterosis in cultivated lentils requires reliable information on genetic diversity in the germplasm. The ability of random amplified polymorphic DNA (RAPD) to distinguish among different taxa of Lens was evaluated for several geographically dispersed accessions/cultivars of four diploid Lens species. This study was carried out to assess whether RAPD data can provide additional evidence about the origin of the cultivated lentil and to measure genetic variability in lentil germplasm. Three cultivars of Lens culinaris ssp. culinaris, including one microsperma, and two macrosperma types, and four wild species (L. culinaris ssp. orientalis, L. odemensis and L. nigricans) were evaluated for genetic variability using a set of 1 11-mer and 14 random 10-mer primers. One hundred and fifty-eight reproducible and scorable DNA bands were observed from these primers. Genetic distances between each of the accessions were calculated from simple matching coefficients. Split decomposition analysis of the RAPD data allowed construction of an unrooted tree. This study revealed that (1) the level of intraspecific genetic variation in cultivated lentils is narrower than that in some wild species. (2) L. culinaris ssp. orientalis is the most likely candidate as a progenitor of the cultivated species, (3) L. nigricans accession W6 3222 (unknown) and L. c. ssp. orientalis W6 3244 (Turkey) can be reclassified as species of L. odemensis and (4) transmission of genetic material in Lens interspecific hybrids is genotypically specific, as identified by the RAPD markers in our study.  相似文献   

9.
Subgenus Cerasus species are useful genetic resources for cherry breeding programs. A total of 17 morphological traits together with 19 random amplified polymorphic DNA (RAPD) primers were used to study 39 accessions including 34 wild Cerasus subgenus genotypes belonging to Prunus avium L., P. cerasus L., P. mahaleb L., P. microcarpa Boiss., P. incana Pall., and P. brachypetala Boiss. species, along with an unknown wild Cerasus sample, two advanced cherry cultivars (‘Lambert’ and ‘Bulgar’), and two rootstocks (‘Colt’ and ‘Gisela 6’). Genotypes were separated into different groups according to their species and collection sites using cluster analysis performed by Ward’s clustering method based on morphological data. Nineteen RAPD primers from 60 screened produced 304 polymorphic reproducible bands (98.15% polymorphism). According to the similarity matrix, the lowest similarity was obtained between P. avium and P. microcarpa samples. A dendrogram was prepared by the unweighted pair-group method with arithmetic average (UPGMA), and the accessions were separated according to their species and geographic origin. In both morphological and molecular results, the advanced cultivars and rootstocks were separated from wild genotypes, and the unknown genotype was grouped with P. mahaleb accessions. Grouping by morphological characteristics was compared with the results of RAPD analysis, with no significant correlations between morphological and molecular data being found. This is the first report of molecular (RAPD) genetic diversity study in wild Cerasus subgenus genotypes from Iran, and the results demonstrate the high potential of RAPD analysis for discrimination of Cerasus subgenus genotypes.  相似文献   

10.
Summary The taxonomic relationships between 52 accessions of 12 Vicia species and three accessions of Lathyrus were examined using nuclear RFLP- and PCR-generated data. Two hundred and sixty informative restriction fragments or amplification products were analysed by single linkage analysis, average cluster analysis, and the Wagner parsimony method. Dendrograms constructed from each type of analysis showed similar overall topologies and could be divided into three parts corresponding respectively to the Lathyrus outgroup, the species grouped in the section Faba/narbonemis complex, and the species belonging to the sections Hypechusa and Peregrinae. With few exceptions, the majority of accessions belonging to one species grouped together before branching to other species. An analysis of mitochondrial DNA phenotypes was both consistent with and complemented the results from the nuclear data. Overall, the species relationships show a good correlation with the classification of Maxted et al. but suggest that V. faba is more closely aligned to species from the sections Hypechusa and Peregrinae than to those in the narbonensis complex. In addition, the position of two new species, V. kalakhensis and V. eristaloides, as members of the narbonensis complex was supported by the molecular data, which also allowed a preliminary classification for recently collected Vicia accessions.  相似文献   

11.
The potential use of random amplified polymorphic DNA (RAPD) was evaluated as a source of genetic markers for studying variation among four species of Panicum and within the crop species P. miliaceum and P. sumatrense. Polymorphism in RAPD markers was observed across and within species. The four species were distinct in RAPD patterns and were separated at low correlation values even with small samples involving single genotypes per species. Accessions of P. miliaceum were grouped according to geographical regions of origin. The study demonstrated that unlike isozyme and protein electrophoresis patterns, RAPD markers can be applied to studying genetic diversity, defining gene pools, and identifying cultivars for this group of millets.  相似文献   

12.
从满江红Azolla Lam.萍-藻共生体中提取DNA进行的RAPD系统分析通常忽视了满江红样品的异质性。本研究通过获得无藻的满江红,比较有藻萍、无藻萍和离体藻之间的RAPD指纹图谱。发现从有藻萍中提取DNA的扩增反应来源于萍藻双方DNA的共同影响。依引物和植物样本的不同,共生双方对扩增产物的贡献结果不同,说明了用无藻萍进行RAPD检测的重要性。对满江红三膘组5个种的11个无藻萍样本进行了RAPD分析,由9个引物产生的127个DNA多态片段用于计算样本间的Jaccard相似系数和UPGMA树状聚类图。结果  相似文献   

13.
The DNA genetic diversity of 40 accessions of genus Leymus was analyzed by random amplified polymorphic DNA (RAPD) markers. A total of 352 products were amplified by 34 10-mer arbitrary primers, among which 337 products (95.74 %) were found to be polymorphic. 5–14 polymorphic bands were amplified by each polymorphic primer, with an average of 9.91 bands. The data of 352 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Great genetic diversity in genus Leymus was observed, the genetic diversity among the different species more abundant than that of the different accessions, and the different accessions in a species or the species from the same areas were clustered together.  相似文献   

14.
Information on genetic diversity and germplasm characterization is essential for successful crop improvement. Diverse data sets (pedigree, morphological, biochemical, DNA based-markers) are employed in various aspects of plant analysis. The objective of this study was to determine the efficiency of phenotypic and RAPD markers in diversity assessment of ten alfalfa (Medicago spp.) accessions from Europe, North America and Australia. Field experiment was designed as a randomised complete block with three replications over two consecutive years (2004, 2005) at one location. Twelve morpho-agronomic traits were recorded on 50 plants per each accession. Genomic DNA’s from 16–20 randomly selected individual plants per accession were used for RAPD analysis. Six primers selected in this study generated a total of 93 polymorphic RAPD bands. The number of polymorphic bands detected per primer ranged from 11 to 20. Genetic distances (GD) among investigated accessions and two-dimensional principal coordinate analysis (2D PCoA) based on phenotypic and molecular data were obtained. The average GD between (0.283–0.416) and within (0.247–0.332) accessions based on RAPD data was higher than GD values obtained by morpho-agronomic traits (0.171–0.354 and 0.157–0.261, respectively). 2D PCoA based on GD from RAPD data grouped most of the studied individual plants to four clusters according to their geographical or taxonomy origin. 2D PCoA based only on morpho-agronomic data did not group plants congruently to their origin, probably due to a strong environmental influence on studied traits. Our results indicated that the RAPD markers were effective in assessing genetic diversity within and between studied alfalfa accessions. In addition, the obtained results suggested that the RAPD markers might be useful for grouping of germplasm with similar genetic background and for pre-screening of potential heterotic groups in our breeding programme.  相似文献   

15.
The AFLP technique was used to assess the genetic relationships among the cultivated papaya ( Carica papaya L.) and related species native to Ecuador. Genetic distances based on AFLP data were estimated for 95 accessions belonging to three genera including C. papaya, at least eight Vasconcella species and two Jacaratia species. Cluster analysis using different methods and principal co-ordinate analysis (PCO), based on the AFLP data from 496 polymorphic bands generated with five primer combinations, was performed. The resulted grouping of accessions of each species corresponds largely with their taxonomic classifications and were found to be consistent with other studies based on RAPD, isozyme and cpDNA data. The AFLP analysis supports the recent rehabilitation of the Vasconcella group as a genus; until recently Vasconcella was considered as a section within the genus Carica. Both cluster and PCO analysis clearly separated the species of the three genera and illustrated the large genetic distance between C. papaya accessions and the Vasconcella group. The specific clustering of the highly diverse group of Vasconcella x heilbornii accessions also suggests that these genotypes may be the result of bi-directional introgression events between Vasconcella stipulata and Vasconcella cundinamarcensis.  相似文献   

16.
Randomly amplified polymorphic DNA (RAPD) markers were used for the identification of pigeonpea [Cajanus cajan (L.) Millsp.] cultivars and their related wild species. The use of single primers of arbitrary nucleotide sequence resulted in the selective amplification of DNA fragments that were unique to individual accessions. The level of polymorphism among the wild species was extremely high, while little polymorphism was detected within Cajanus cajan accessions. All of the cultivars and wild species under study could be easily distinguished with the help of different primers, thereby indicating the immense potential of RAPD in the genetic fingerprinting of pigeonpea. On the basis of our data the genetic relationship between pigeonpea cultivars and its wild species could be established.NCL Communication No. 6062  相似文献   

17.
Optimization of primer screening for evaluation of genetic relationship in 34 cultivars of rose through random amplified polymorphic DNA (RAPD) markers was investigated. Four series of decamer primers were used for screening and optimization of RAPD analysis between which A and N series performed good amplification of fragments as compared with other series. The primers OPN-07 and OPN-15 produced maximum number of DNA fragments in Rosa hybrida cv. Anuraag. Some primer either did not produce amplification or produced very poor amplification. Further, ten selected primers were used for genetic analysis of 34 rose cultivars. The primer OPN-15 amplified 21 fragments in all cultivars tested. A total of 162 distinct DNA fragments (bands) ranging from 100 to 3400 base pairs were amplified by using 10 selected random primers. The cluster analysis indicated that these rose cultivars formed nine clusters.  相似文献   

18.
The genetic variability based on random-amplified polymorphic DNA markers was analysed among 10 cultivated rose varieties and 9 wild species from three different series of the genus Rosa. Using 13 different RAPD primers, 104 polymorphic DNA fragments with a high potential to differentiate rose genotypes could be produced. A dendrogram displaying the relative genetic similarities among the genotypes shows the existence of large genetic diversity among the cultivated roses as compared to the wild species. Furthermore, the main clusters found here are in agreement with known pedigrees and the classical taxonomy. However, the relationships between cultivated roses as inferred by RAPD markers do not correlate with the classical rose classification system. From the present data it is concluded that cultivated roses display a high level of genetic variability despite the fact that single morphological and physiological characters may be less polymorphic within rose groups. This contrasts with the widely accepted opinion of a lack of genetic variability in roses. This is also in accordance with the reported history of rose breeding which makes it highly probable that rose genomes comprise mosaics of different species genomes. As a consequence, it may be possible to utilize the high genetic variability of all genetic traits not under actual selection by breeders for future breeding programmes.  相似文献   

19.
Randomly amplified polymorphic DNA (RAPD) markers were used to estimate intra- and interspecific variations in the genus Lens (lentil). Twenty cultivars of L. culinaris ssp. culinaris, including 11 microsperma (small-seeded) and nine macrosperma (large-seeded) types, and 16 wild relatives (four accessions each of L. culinaris ssp. orientalis, L. odemensis, L. nigricans and L. ervoides), were evaluated for genetic variability using a set of 40 random 10-mer primers. Fifty reproducibly scorable DNA bands were observed from ten of the primers, 90% of which were polymorphic. Genetic distances between each of the accessions were calculated from simple matching coefficients. A dendrogram showing genetic relationships between them was constructed by an unweighted pair-group method with arithmetical averages (UPGMA). This study revealed that (1) expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, (2) L. culinaris ssp. orientalis is the most likely candidate for a progenitor of the cultivated species, and (3) microsperma and macrosperma cultivars were indistinguishable by the RAPD markers identified here.  相似文献   

20.
Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号