首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this study, apical meristems from adventitious buds of three lily (Lilium L.) cultivars were successfully cryopreserved by droplet-vitrification. The most effective techniques were as follows. Excised meristems from in vitro plantlets which had been sub-cultured for about 2 months were cold-hardened at 4 °C for 1 week, precultured on MS medium supplemented with 0.3 mol L−1 sucrose for 2 days, osmoprotected in loading solution for 20-40 min at room temperature and then soaked in PVS2 solution for 90-120 min at 0 °C, frozen in microdroplets of vitrification solution placed on aluminium foils, which were immersed rapidly in liquid nitrogen. The meristems were then rapidly rewarmed by dilution solution, transferred to regeneration medium and stored in the dark for two weeks at 20 °C, and then cultured under white fluorescent light at an intensity of 2000 lux, with a 16 h photoperiod at 20 °C. The highest post-thaw survival percentages of three cultivars ‘Siberia’ (Lilium × siberia), Lilium lancifolium Thunb. and ‘Snow Queen’ Lilium × longiflorum were 65.0%, 83.8% and 43.3%, and regeneration percentages were 62.0%, 67.6% and 35.0%, respectively. The study demonstrated that cryopreservation by droplet-vitrification increased survival and regeneration percentages of certain lily cultivars compared with vitrification. Thus to cryopreserve lily meristems, droplet-vitrification method is preferable to the vitrification method.  相似文献   

5.
Dried axillary buds from plantlets of Asparagus lofficinalis L. grown in vitro were successfully cryopreserved. Single node segments (5mm in length) with axillary bud were taken from mature in vitro plantlets. The segments were precultured on solidfied Murashige-Skoog medium (1962) containing 0.7M sucrose at 25 °C in light for 2 days. Thereafter, these precultured segments were subjected to dehydration with silica gel at room temperature for 0 to 24 h. The axillary buds of precultured segments tolerated dehydration to about 14% water content(FW) with 50% lethality (LD50) and the threshold water content at which the dried buds remained alive after exposure to liquid nitrogen was 16.9%(LD50). The maximum rate of survival of cryopreserved buds was about 71% of untreated control. Surviving buds produced shoots and regenerated into plantlets. These results demonstrate the feasibility of cryopreserving dried axillary buds from in vitro plantlets.Abbreviations MS Murashige and Skoog medium(1962) - LN liquid nitrogen - FW fresh weight basis - LD50 the water content at 50% lethality - ABA abscisic acid - NAA -naphthalene acetic acid - BA 6-benzyladenine - DTA differential thermal analysis  相似文献   

6.
Alginate beads containing axillary buds of in vitro-grown gentian (Gentiana scabra Bunge var. buergeri Maxim.), were successfully cryopreserved following 2 step-preculture with sucrose and desiccation. The optimal preculture conditions were as follows: axillary buds were excised from in vitro-grown gentian plants and precultured on semi-solid Murashige and Skoog (MS) medium containing 0.1 M sucrose for 10 days (25 °C, 16-h photoperiod) (first step). This was followed by incubation on semi-solid MS media containing 0.4 M (1 day) and then 0.7 M sucrose (1 day) (second step). After preculture, the buds were encapsulated in alginate beads and desiccated aseptically on silica gel for 9 h to a water content of 10% (fresh weight basis), followed by immersion in liquid nitrogen (LN). With this protocol, 87% of the gentian buds survived exposure to LN and showed normal development of shoots and roots in vitro and in vivo. Depletion of NH4NO3 in the regeneration medium did not improve survival following desiccation and exposure to LN. The results show that 2 step-preculture with sucrose is effectively applicable in encapsulation–desiccation based cryopreservation of gentian axillary buds. This preculture can replace the conventionally used lengthy cold-hardening treatment and is useful for routine cryopreservation of gentian germplasm.  相似文献   

7.
8.
Axillary bud outgrowth is regulated by both environmental cues and internal plant hormone signaling. Central to this regulation is the balance between auxins, cytokinins, and strigolactones. Auxins are transported basipetally and inhibit the axillary bud outgrowth indirectly by either restricting auxin export from the axillary buds to the stem (canalization model) or inducing strigolactone biosynthesis and limiting cytokinin levels (second messenger model). Both models have supporting evidence and are not mutually exclusive. In this study, we used a modified split-plate bioassay to apply different plant growth regulators to isolated stem segments of chrysanthemum and measure their effect on axillary bud growth. Results showed axillary bud outgrowth in the bioassay within 5 days after nodal stem excision. Treatments with apical auxin (IAA) inhibited bud outgrowth which was counteracted by treatments with basal cytokinins (TDZ, zeatin, 2-ip). Treatments with basal strigolactone (GR24) could inhibit axillary bud growth without an apical auxin treatment. GR24 inhibition of axillary buds could be counteracted with auxin transport inhibitors (TIBA and NPA). Treatments with sucrose in the medium resulted in stronger axillary bud growth, which could be inhibited with apical auxin treatment but not with basal strigolactone treatment. These observations provide support for both the canalization model and the second messenger model with, on the one hand, the influence of auxin transport on strigolactone inhibition of axillary buds and, on the other hand, the inhibition of axillary bud growth by strigolactone without an apical auxin source. The inability of GR24 to inhibit bud growth in a sucrose treatment raises an interesting question about the role of strigolactone and sucrose in axillary bud outgrowth and calls for further investigation.  相似文献   

9.
The galls induced by Cecidomyiidae, Diptera, are very diverse, with conspicuous evidence of tissue manipulation by the galling herbivores. Bud galls, as those induced by an unidentified Cecidomyiidae species on Marcetia taxifolia, Melastomataceae, can be considered as one of the most complex type of prosoplasma galls. The gall-inducer manipulate the axillary meristem of the plant in a way that gall morphogenesis may present both vegetative and reproductive features of the host plant. Herein, we analyzed traces of determinate and indeterminate growth in the bud gall of M. taxifolia, looking for parallels between the features of the leaves and flowers, natural fates of the meristematic cells. The bud galls are induced by the cecidomyiid fly, and are formed by the connation of eight leaf primordia, a common process in ovary morphogenesis. The bud gall corresponds to a pistil-shaped gall morphotype, with anatomical features similar to those of an hypanthium and sepals. The gall mimics an ovary, which has protective barriers at the apex, and a nutritive tissue (with storage of lipids and proteins) or a placenta, respectively, at the basal portion. The redifferentiation of the promeristem into a nutritive tissue at the base of the gall confers a determinate destiny to the axillary bud. Comparatively, the gradients of cell expansion and of accumulation of primary metabolites also indicate that the gall and the ovary are convergent structures. Some constraints of the host plant cells, such as the absence of lignification, and the accumulation of polyphenols, lipids and terpenoids, are not altered and may confer chemical protection for plant tissues and the larva against oxidative stress.  相似文献   

10.
11.
12.
For the purpose of hydrolysing hemicelluloses to oligomers and monomers, Sesbania grandiflora samples were subjected to isothermal autohydrolysis in the temperatures ranging from 145 °C to 190 °C, using a solid to liquid ratio of 8 and reaction times up to 7.5 h. Kinetic models based on sequential pseudo-homogeneous first order Kinetics with Arrhenius type temperature dependence were employed for describing the time course of the main hemicelluloses compounds and their degradation products. The hydrothermal treatment results show that Sesbania grandiflora can be employed as an alternative raw material for the production of XOS leading to high concentrations of XOS (14.1 g/L in the experiment carried out at 190 °C and 0.1 h) and xylan to XOS conversion (62.6% in the experiment carried out at 190 °C and 6 min). The model proposed provides a satisfactory interpretation of the experimental data obtained in the hydrothermal treatments of this study.  相似文献   

13.
Control of outgrowth and dormancy in axillary buds.   总被引:1,自引:0,他引:1  
S Shimizu-Sato  H Mori 《Plant physiology》2001,127(4):1405-1413
  相似文献   

14.
A method is described for rapid multiplication from axillary buds of six Mentha species. Nodal segments from one-year old plants were grown on Murashige and Skoog medium (BMS), supplemented with BAP (1.0; 2.0 mg/l) and KIN (1.0 mg/l) and kept at 28 ± 1°C under fluorescent light for 30 days. After this period, several shoots (15–20 shoots per explant) with roots were produced which were placed in soil for further growth.  相似文献   

15.
Zephyr lily (Zephyranthes grandiflora), an important ornamental plant has been micropropagated in vitro after controlling microbial contamination by a pretreatment with 0.2 % Bavistin and 0.1 % Pantomycin for 4 h before final sterilization with 0.1 % mercuric chloride. In 67 % of the sterile cultures, 11 shoots on average were regenerated directly from basal half of bulb scales in Murashige and Skoog (MS) medium containing 3 % sucrose and 2 mg dm−3 benzylaminopurine (BAP). Shoots emerged in bunches on a basal achlorophyllous bulbous part. Combination of 2 mg dm−3 BAP with 1 mg dm−3 gibberellic acid (GA3) enhanced shoot growth. Stout roots (maximum of 5–6 per shoot) were developed in presence of 1 mg dm−3 indole-3-butyric acid (IBA). Micro-bulbs showed potential of regeneration and could be used as secondary explants. The morphologically identical plants derived by in vitro propagation were genetically identical as shown by PCR based ISSR marker analysis of genomic DNA.  相似文献   

16.
以江西铅山红芽芋胚性愈伤组织为材料,研究各种因素对其玻璃化法超低温保存的影响。结果表明:江西铅山红芽芋胚性愈伤组织玻璃化法超低温保存较佳的预培养条件为0.3mol·L-1蔗糖预培养3d,较佳的60%PVS2装载时间为20min,较佳的100%PVS2脱水条件为25℃脱水30min,较佳的化冻温度为40℃,较佳的洗涤液蔗糖浓度为1.2mol·L-1,较佳的冻后培养条件为暗培养7d再转到光周期中培养。红芽芋胚性愈伤组织包埋玻璃化超低温保存后的平均成活率约为70%。红芽芋胚性愈伤组织冻后再生苗没有发生形态学、生理学和细胞学的变异。  相似文献   

17.
An auxin-independent adventitious root culture of Hyoscyamus niger was established, and the roots were successfully cryopreserved with a high regeneration rate of 93.3 percnt; by vitrification method. The root tips were cultured for 12 to 14 days in phytohormone-free Murashige and Skoog (MS) liquid medium, and were excised and precultured on Woody Plant (WP) solid medium supplemented with 0.3 mol/L sucrose at 25 °C in the dark. After 1 day, they were treated with MS-based loading solution for 10 min, followed by soaking in MS-based PVS2 for 10 min at 0 °C. The treated root tips were immersed in liquid nitrogen (-196 °C). For recovery, the root tips were thawed rapidly at 40 °C and washed with MS medium containing 1 mol/L sucrose prior to plating onto WP solid medium. The regenerated roots were evaluated by their growth and tropane alkaloid production. The growth and alkaloid content of regenerated roots analyzed using HPLC were found to be almost the same as those of non-treated roots.  相似文献   

18.
该研究通过对脱水时间和化冻温度的探索,检验了包埋玻璃化法在超低温保存湿润生境中苔藓的可能性。结果表明:卵叶泥炭藓无菌苗在4℃条件下预培养3d后,在0℃用60% PVS_2装载30min,PVS_2脱水60min后迅速投入液氮保存,24h后用40℃水浴快速化冻2min再培养,成活率可达42.41%,且再生植株与常温状态下的植株形态指标没有显著性差异。研究认为,包埋玻璃化法超低温保存湿润环境中生长的苔藓植物是可行的。  相似文献   

19.
黄花蒿规范化生产标准操作规程(SOP)   总被引:1,自引:0,他引:1  
以《中药材生产质量管理规范》(GAP)为指导原则,对黄花蒿栽培生产的区划、生态环境、育苗技术、栽培技术、采收加工、档案、质量检测以及包装、储运等一系列过程开展研究。确定各个生产环节的最佳指标和方法,制定了黄花蒿的规范化生产标准操作规程,提高黄花蒿的产量和质量。  相似文献   

20.
Wang LQ  Yang J  Deng E  Wang GB  Peng ZS 《Biotechnology letters》2008,30(12):2199-2203
Four parameters, three hormones and sucrose, at seven concentrations, were designed for shoot proliferation of Penthorum chinense by uniform design. The obtained data were used for building two quadratic polynomial equations by partial least square to determine optimum concentrations of four factors. Experiments for verification confirmed that no significant difference existed between the predicted and the validated values in shoot number and length based on all inoculated explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号