首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The predominant isoform of glial fibrillary acidic protein (GFAP), GFAPalpha, is the characteristic building block of the cytoskeletal intermediate filaments in astrocytes. Isoform GFAPepsilon, produced by alternative splicing of the GFAP gene, includes a new tail domain that confers a presenilin binding capacity. We here show that the GFAPepsilon tail prevents GFAPepsilon homodimerization and homomeric filament formation, whereas the ability to form heterodimers and filaments with GFAPalpha is retained. Furthermore, GFAPepsilon shows decreased affinity for several GFAPalpha-interacting proteins. A GFAPepsilon tail mutation that results in gain of GFAPepsilon dimerization and filament formation abolishes presenilin binding. This mutation also abolishes interaction between the tail and the coiled-coil domain of GFAPepsilon. Together, this indicates that direct interaction between the coiled-coil and tail domains may serve as an inhibitory mechanism for homomeric dimerization and filament formation. We propose that the GFAPepsilon isoform represents a new functionally distinct component of GFAP intermediate filaments.  相似文献   

5.
6.
Cytoplasmic lipid droplets (CLD) in mammary epithelial cells undergo secretion by a unique membrane envelopment process to produce milk lipids. Adipophilin (ADPH/Plin2), a member of the perilipin/PAT family of lipid droplet-associated proteins, is hypothesized to mediate CLD secretion through interactions with apical plasma membrane elements. We found that the secretion of CLD coated by truncated ADPH lacking the C-terminal region encoding a putative four-helix bundle structure was impaired relative to that of CLD coated by full-length ADPH. We used homology modeling and analyses of the solution and membrane binding properties of purified recombinant ADPH C terminus to understand how this region possibly mediates CLD secretion. Homology modeling supports the concept that the ADPH C terminus forms a four-helix bundle motif and suggests that this structure can form stable membrane bilayer interactions. Circular dichroism and protease mapping studies confirmed that the ADPH C terminus is an independently folding α-helical structure that is relatively resistant to urea denaturation. Liposome binding studies showed that the purified C terminus binds to phospholipid membranes through electrostatic dependent interactions, and cell culture studies documented that it localizes to the plasma membrane. Collectively, these data provide direct evidence that the ADPH C terminus forms a stable membrane binding helical structure that is important for CLD secretion. We speculate that interactions between the four-helix bundle of ADPH and membrane phospholipids may be an initial step in milk lipid secretion.  相似文献   

7.
The Drosophila Sprouty (SPRY) protein has been shown to inhibit the actions of epidermal growth factor and fibroblast growth factor. However, the role of mammalian SPRY proteins has not been clearly elucidated. We postulated that human Sprouty2 (hSPRY2) is an inhibitor of cellular migration and proliferation. Indeed, using stably transfected HeLa cells, which expressed hemagglutinin (HA)-tagged hSPRY2 or hSPRY2 tagged at the C terminus with red fluorescent protein, we demonstrated that hSPRY2 inhibits the migration of cells in response to serum, epidermal growth factor, fibroblast growth factor, and platelet-derived growth factor. Additionally, hSPRY2 also inhibited the growth of HeLa cells in response to serum. Previously, two C-terminal domains on hSPRY2, which are necessary for its colocalization with microtubules (residues 123-177) or translocation to membrane ruffles (residues 178-194), have been identified (Lim, J., Wong, E. S., Ong, S. H., Yusoff, P., Low, B. C., and Guy, G. R. (2000) J. Biol. Chem. 275, 32837-32845). Therefore, using TAT-tagged hSPRY2 and its mutants, we determined the role of these two C-terminal domains in the inhibition of cell migration and proliferation. Our data show that the deletion of either of these two regions in hSPRY2 abrogates its ability to modulate cell migration in response to different growth factors and proliferation in response to serum. Therefore, we conclude that hSPRY2 inhibits the actions of a number of growth factors, and its C terminus, which is homologous among various SPRY isoforms, is important in mediating its biological activity.  相似文献   

8.
Previous work has indicated a role for the NH2-terminal segment of the C3 alpha'-chain in the binding interactions of C3b with a number of its protein ligands. In particular, we have identified two clusters of acidic residues, namely, E736 and E737 and to a lesser extent D730 and E731, as being important in the binding of C3b to factor B and complement receptor 1 and the binding of iC3b to complement receptor 3. Whereas human C3 and C4 have an overall sequence identity of 29%, over a segment near the NH2 termini of their respective alpha'-chains the sequence identity is 56% (70% chemical similarity). Given the functional similarity between the C4b-C2 and C3b-B interactions in the respective formation of the classical and alternative pathway C3 convertases, as well as the sequence conservation of two acidic clusters, we hypothesized that residues 744EED and 749DEDD within the NH2-terminal segment of the C4 alpha'-chain would mediate in part the binding of C2 to C4b. We tested this hypothesis using three independent approaches. Site-directed mutagenesis experiments revealed that replacing subsets of the charged residues by their isosteric amides within either acidic cluster resulted in molecules having reduced C2 binding activity. Moreover, a synthetic peptide (C4 residues 740-756) encompassing the two acidic clusters was a specific inhibitor of the binding of C2 to red cell-associated C4b. Finally, Ab raised against the above peptide was able to block the interaction between red cell-associated C4b and fluid phase C2. Taken together, these results strongly suggest that the NH2-terminal acidic residue-rich segment of C4 alpha'-chain contributes importantly to the interaction of C4b with C2.  相似文献   

9.
A proper amino terminus of diphtheria toxin is important for cytotoxicity   总被引:1,自引:0,他引:1  
A series of deletions and substitutions were made at the 5' end of the gene fusion between the first 388 codons of diphtheria toxin (DT) and a cDNA encoding human IL2. The chimeric protein (DT388-IL2) was expressed and purified from E. coli and found to be very cytotoxic to a human T cell line, HUT 102, that expresses a large number of IL2 receptors. Deletion of the first five amino acids of DT resulted in a non-cytotoxic chimeric protein that had both ADP-ribosylation activity and IL2 receptor binding activity. Deletion of the first two amino acids of DT had little effect on cytotoxicity, while deletion of the first four amino acids or of two acidic residues at positions 3 and 4 greatly reduced cytotoxicity. Unexpectedly, a mutant containing a single leucine in place of the first two amino acids (gly, ala) was 2-3 fold more active. The amino terminus of DT may participate in the translocation of the A chain to the cytosol in a manner similar to Pseudomonas exotoxin (PE) in which a specific C-terminal sequence has been proposed to be involved in its cytotoxicity.  相似文献   

10.
11.
The tumor suppressor phosphatase PTEN regulates cell migration, growth, and survival by dephosphorylating phosphatidylinositol second messengers and signaling phosphoproteins. PTEN possesses a C-terminal noncatalytic regulatory domain that contains multiple putative phosphorylation sites, which could play an important role in the control of its biological activity. The protein kinase CK2 phosphorylated, in a constitutive manner, a cluster of Ser/Thr residues located at the PTEN C terminus. PTEN-phosphorylated defective mutants showed decreased stability in comparison with wild type PTEN and were more rapidly degraded by the proteasome. Inhibition of PTEN phosphorylation by the CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosyl-benzimidazole also diminished the PTEN protein content. Our results support the notion that proper phosphorylation of PTEN by CK2 is important for PTEN protein stability to proteasome-mediated degradation.  相似文献   

12.
The ToxR protein of Vibrio cholerae is an integral membrane protein that co-ordinately regulates virulence determinant expression. ToxR directiy activates the cholera toxin operon, but maximal activation is achieved in the presence of ToxS, an integral membrane protein thought to interact with ToxR periplasmic sequences. Studies that substitute alkaline phosphatase sequences for the periplasmic domain of ToxR have led to a model for ToxR activation based on dimerization and ToxS interaction. We constructed λ-ToxR chimeric proteins using the DNA-binding domain of the phage λ repressor, which cannot effectively dimerize by itself, to assess the ability of ToxR to form dimers in Escherichia coli The results suggest that ToxR sequences can propagate dimerization, and that ToxS can influence the ability to dimerize.  相似文献   

13.
The core protein of pestiviruses is released from the polyprotein by viral and cellular proteinases. Here we report on an additional intramembrane proteolytic step that generates the C terminus of the core protein. C-terminal processing of the core protein of classical swine fever virus (CSFV) was blocked by the inhibitor (Z-LL)(2)-ketone, which is specific for signal peptide peptidase (SPP). The same effect was obtained by overexpression of the dominant-negative SPP D(265)A mutant. The presence of (Z-LL)(2)-ketone reduced the viability of CSFV almost 100-fold in a concentration-dependent manner. Reduction of virus viability was also observed in infection experiments using a cell line that inducibly expressed SPP D(265)A. The position of SPP cleavage was determined by C-terminal sequencing of core protein purified from virions. The C terminus of CSFV core protein is alanine(255) and is located in the hydrophobic center of the signal peptide. The intramembrane generation of the C terminus of the CSFV core protein is almost identical to the processing scheme of the core protein of hepatitis C viruses.  相似文献   

14.
The bacteriophage Mu immunity repressor is a conformationally sensitive sensor that can be interconverted between forms resistant to and sensitive to degradation by ClpXP protease. Protease-sensitive repressor molecules with an altered C-terminal sequence promote rapid degradation of the wild-type repressor by inducing its C-terminal end to become exposed. Here we determined that the last 5 C-terminal residues (CTD5) of the wild-type repressor contain the motif required for recognition by the ClpX molecular chaperone, a motif that is strongly dependent upon the context in which it is presented. Although attachment of the 11-residue ssrA degradation tag to the C terminus of green fluorescent protein (GFP) promoted its rapid degradation by ClpXP, attachment of 5-27 C-terminal residues of the repressor failed to promote degradation. Disordered peptides derived from 41 and 35 C-terminal residues of CcdA (CcdA41) and thioredoxin (TrxA35), respectively, activated CTD5 when placed as linkers between GFP and repressor C-terminal sequences. However, when the entire thioredoxin sequence was included as a linker to promote an ordered configuration of the TrxA35 peptide, the resulting substrate was not degraded. In addition, a hybrid tag, in which CTD5 replaced the 3-residue recognition motif of the ssrA tag, was inactive when attached directly to GFP but active when attached through the CcdA41 peptide. Thus, CTD5 is sufficient to act as a recognition motif but has requirements for its presentation not shared by the ssrA tag. We suggest that activation of CTD5 may require presentation on a disordered or flexible domain that confers ligand flexibility.  相似文献   

15.
B Hecht  G Müller    W Hillen 《Journal of bacteriology》1993,175(4):1206-1210
We have developed a new genetic selection system for Tet repressor mutations with a noninducible phenotype for tetracycline (TetRs). Extensive chemical mutagenesis of tetR yielded 93 single-site Tet repressor mutations. They map from residue 23 preceding the alpha-helix-turn-alpha-helix operator binding motif to residue 196 close to the C terminus of the repressor. Thirty-three of the mutations are clustered between residues 95 and 117, and another 27 are clustered between residues 131 to 158. Several of the mutants were characterized quantitatively in vivo for induction by tetracycline and anhydrotetracycline. While all of these are severely reduced in tetracycline-mediated induction, only some of them are affected for anhydrotetracycline-mediated induction.  相似文献   

16.
A screen of Saccharomyces cerevisiae histone alanine substitution mutants revealed that mutations in any of three adjacent residues, L97, Y98, or G99, near the C terminus of H4 led to a unique phenotype. The mutants grew slowly, became polyploid or aneuploid rapidly, and also lost chromosomes at a high rate, most likely because their kinetochores were not assembled properly. There was lower histone occupancy, not only in the centromeric region, but also throughout the genome for the H4 mutants. The mutants displayed genetic interactions with the genes encoding two different histone chaperones, Rtt106 and CAF-I. Affinity purification of Rtt106 and CAF-I from yeast showed that much more H4 and H3 were bound to these histone chaperones in the case of the H4 mutants than in the wild type. However, in vitro binding experiments showed that the H4 mutant proteins bound somewhat more weakly to Rtt106 than did wild-type H4. These data suggest that the H4 mutant proteins, along with H3, accumulate on Rtt106 and CAF-I in vivo because they cannot be deposited efficiently on DNA or passed on to the next step in the histone deposition pathway, and this contributes to the observed genome instability and growth defects.  相似文献   

17.
STBD1 (starch-binding domain-containing protein 1) belongs to the CBM20 (family 20 carbohydrate binding module) group of proteins, and is implicated in glycogen metabolism and autophagy. However, very little is known about its regulation or interacting partners. Here, we show that the CBM20 of STBD1 is crucial for its stability and ability to interact with glycogen-associated proteins. Mutation of a conserved tryptophan residue (W293) in this domain abolished the ability of STBD1 to bind to the carbohydrate amylose. Compared with the WT (wild-type) protein, this mutant exhibited rapid degradation that was rescued upon inhibition of the proteasome. Furthermore, STBD1 undergoes ubiquitination when expressed in COS cells, and requires the N-terminus for this process. In contrast, inhibition of autophagy did not significantly affect protein stability. In overexpression experiments, we discovered that STBD1 interacts with several glycogen-associated proteins, such as GS (glycogen synthase), GDE (glycogen debranching enzyme) and Laforin. Importantly, the W293 mutant of STBD1 was unable to do so, suggesting an additional role for the CBM20 domain in protein–protein interactions. In HepG2 hepatoma cells, overexpressed STBD1 could associate with endogenous GS. This binding increased during glycogenolysis, suggesting that glycogen is not required to bridge this interaction. Taken together, our results have uncovered new insights into the regulation and binding partners of STBD1.  相似文献   

18.
19.
Viperin, an antiviral protein, has been shown to contain a CX(3)CX(2)C motif, which is conserved in the radical S-adenosyl-methionine (SAM) enzyme family. A triple mutant which replaces these three cysteines with alanines has been shown to have severe deficiency in antiviral activity. Since the crystal structure of Viperin is not available, we have used a combination of computational methods including multi-template homology modeling and molecular dynamics simulation to develop a low-resolution predicted structure. The results show that Viperin is an α-β protein containing iron-sulfur cluster at the center pocket. The calculations suggest that the removal of iron-sulfur cluster would lead to collapse of the protein tertiary structure. To verify these predictions, we have prepared, expressed and purified four mutant proteins. In three mutants individual cysteine residues were replaced by alanine residues while in the fourth all the cysteines were replaced by alanines. Conformational analyses using circular dichroism and steady state fluorescence spectroscopy indicate that the mutant proteins are partially unfolded, conformationally unstable and aggregation prone. The lack of conformational stability of the mutant proteins may have direct relevance to the absence of their antiviral activity.  相似文献   

20.
We have characterized the epitopes of a panel of 12 monoclonal antibodies (Mabs) directed to normal human cellular prion protein (PrP(C)) using ELISA and Western blotting of recombinant PrP or synthetic peptide fragments of PrP. The first group of antibodies, which is represented by Mabs 5B2 and 8B4, reacts with PrP(23-145), indicating that the epitopes for these Mabs are located in the 23 to 145 N-terminal region of human PrP. The second group includes Mabs 1A1, 6H3, 7A9, 8C6, 8H4, 9H7 and 2G8. These antibodies bind to epitopes localized within N-terminally truncated recombinant PrP(90-231). Finally, Mabs 5C3, 2C9 and 7A12 recognize both PrP(23-145) and PrP(90-231), suggesting that the epitopes for this group are located in the region encompassing residues 90 to 145. By Western blotting with PepSpot(TM), only three of Mabs studied (5B2, 8B4 and 2G8) bind to linear epitopes that are present in 13-residue long synthetic peptides corresponding to human PrP fragments. The remaining nine Mabs appear to recognize conformational epitopes. Two N terminus-specific Mabs were found to prevent the binding of the C terminus-specific Mab 6H3. This observation suggests that the unstructured N-terminal region may influence the local conformation within the folded C-terminal domain of prion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号