首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes.

Methodology/Principal Findings

Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta.

Conclusions/Significance

We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.  相似文献   

2.
The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2SOCS3) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2SOCS3 express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fattyacid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2SOCS3 show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr896 and Akt Ser473 in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner.  相似文献   

3.
4.

Background/Objective

IFNs are a group of cytokines that possess potent antiviral and antitumor activities, while β-catenin pathway is a proliferative pathway involved in carcinogenesis. Interaction between these two pathways has not been well elaborated in hepatocellular carcinoma (HCC).

Methods

HCC cell lines, HepG2 and Huh7, were used in this study. β-catenin protein levels and corresponding signaling activities were observed by flow cytometry and luciferase assay, respectively. Cell proliferation was quantified by counting viable cells under microscope, and apoptosis by TUNEL assay. DKK1 and GSK3β levels were determined by flow cytometry. Secreted DKK1 was tested by ELISA. FLUD, S3I and aDKK1 were used to inhibit STAT1, STAT3 and DKK1 activities, respectively.

Results

Our findings show that all three types of IFNs, IFNα, IFNγ and IFNλ, are capable of inhibiting β-catenin signaling activity in HepG2 and Huh7 cells, where IFNγ was the strongest (p<0.05). They expressed suppression of cellular proliferation and induced apoptosis. IFNγ expressed greater induction ability when compared to IFNα and IFNλ (p<0.05). All tested IFNs could induce DKK1 activation but not GSK3β in HepG2 and Huh7 cells. IFNs induced STAT1 and STAT3 activation but by using specific inhibitors, we found that only STAT3 is vital for IFN-induced DKK1 activation and apoptosis. In addition, DKK1 inhibitor blocked IFN-induced apoptosis. The pattern of STAT3 activation by different IFNs is found consistent with the levels of apoptosis with the corresponding IFNs (p<0.05).

Conclusions

In hepatocellular carcinoma, all three types of IFNs are found to induce apoptosis by inhibiting β-catenin signaling pathway via a STAT3- and DKK1-dependent pathway. This finding points to a cross-talk between different IFN types and β-catenin signaling pathways which might be carrying a biological effect not only on HCC, but also on processes where the two pathways bridge.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNβ production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNβ-promoter activity, whereas all six genes induced a collapse in IFNβ mRNA levels, corresponding with suppressed IFNβ protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.  相似文献   

12.
13.
Type 1 diabetes is characterized by a loss of islet β-cells. Ciliary neurotrophic factor (CNTF) protects pancreatic islets against cytokine-induced apoptosis. For this reason, we assessed whether CNTF protects mice against streptozotocin-induced diabetes (a model of type 1 diabetes) and the mechanism for this protection. WT and SOCS3 knockdown C57BL6 mice were treated for 5 days with citrate buffer or 0.1 mg/kg CNTF before receiving 80 mg/kg streptozotocin. Glycemia in non-fasted mice was measured weekly from days 0–28 after streptozotocin administration. Diabetes was defined as a blood glucose > 11.2 mmol/liter. Wild-type (WT) and SOCS3 knockdown MIN6 cells were cultured with CNTF, IL1β, or both. CNTF reduced diabetes incidence and islet apoptosis in WT but not in SOCS3kd mice. Likewise, CNTF inhibited apoptosis in WT but not in SOCS3kd MIN6 cells. CNTF increased STAT3 phosphorylation in WT and SOCS3kd mice and MIN6 cells but reduced STAT1 phosphorylation only in WT mice, in contrast to streptozotocin and IL1β. Moreover, CNTF reduced NFκB activation and required down-regulation of inducible NO synthase expression to exert its protective effects. In conclusion, CNTF protects mice against streptozotocin-induced diabetes by increasing pancreatic islet survival, and this protection depends on SOCS3. In addition, SOCS3 expression and β-cell fate are dependent on STAT1/STAT3 ratio.  相似文献   

14.
15.
In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.  相似文献   

16.
Interleukin-31 (IL-31) is a T helper type 2 cell-derived cytokine tightly associated with inflammatory skin disorders. IL-31-induced signaling is mediated by a receptor complex composed of oncostatin M receptor β and the cytokine-specific receptor subunit IL-31Rα, of which there are several isoforms. The latter can be classified as long or short isoforms with respect to their intracellular domain. At present, the signaling capabilities of the different isoforms remain inchoately understood, and potential mechanisms involved in negative regulation of IL-31Rα signaling have so far not been studied in detail. Here, we show that both the long and short isoforms of IL-31Rα are capable of inducing STAT signaling. However, the presence of a functional JAK-binding box within IL-31Rα is an essential prerequisite for functional IL-31-mediated STAT3 signaling. Moreover, both the long and short isoforms require oncostatin M receptor β for their activity. We also show that IL-31 induces expression of four suppressor of cytokine signaling family members and provide evidence that SOCS3 acts as a potent feedback inhibitor of IL-31-induced signaling. Taken together, this study identifies crucial requirements for IL-31 signaling and shows its counter-regulation by SOCS3.  相似文献   

17.
18.
19.
The present work exemplifies how parameter identifiability analysis can be used to gain insights into differences in experimental systems and how uncertainty in parameter estimates can be handled. The case study, presented here, investigates interferon-gamma (IFNγ) induced STAT1 signalling in two cell types that play a key role in pancreatic cancer development: pancreatic stellate and cancer cells. IFNγ inhibits the growth for both types of cells and may be prototypic of agents that simultaneously hit cancer and stroma cells. We combined time-course experiments with mathematical modelling to focus on the common situation in which variations between profiles of experimental time series, from different cell types, are observed. To understand how biochemical reactions are causing the observed variations, we performed a parameter identifiability analysis. We successfully identified reactions that differ in pancreatic stellate cells and cancer cells, by comparing confidence intervals of parameter value estimates and the variability of model trajectories. Our analysis shows that useful information can also be obtained from nonidentifiable parameters. For the prediction of potential therapeutic targets we studied the consequences of uncertainty in the values of identifiable and nonidentifiable parameters. Interestingly, the sensitivity of model variables is robust against parameter variations and against differences between IFNγ induced STAT1 signalling in pancreatic stellate and cancer cells. This provides the basis for a prediction of therapeutic targets that are valid for both cell types.  相似文献   

20.
Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNβ) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNβ on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNβ treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号