首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High Motility Reduces Grazing Mortality of Planktonic Bacteria   总被引:5,自引:1,他引:4       下载免费PDF全文
We tested the impact of bacterial swimming speed on the survival of planktonic bacteria in the presence of protozoan grazers. Grazing experiments with three common bacterivorous nanoflagellates revealed low clearance rates for highly motile bacteria. High-resolution video microscopy demonstrated that the number of predator-prey contacts increased with bacterial swimming speed, but ingestion rates dropped at speeds of >25 μm s−1 as a result of handling problems with highly motile cells. Comparative studies of a moderately motile strain (<25 μm s−1) and a highly motile strain (>45 μm s−1) further revealed changes in the bacterial swimming speed distribution due to speed-selective flagellate grazing. Better long-term survival of the highly motile strain was indicated by fourfold-higher bacterial numbers in the presence of grazing compared to the moderately motile strain. Putative constraints of maintaining high swimming speeds were tested at high growth rates and under starvation with the following results: (i) for two out of three strains increased growth rate resulted in larger and slower bacterial cells, and (ii) starved cells became smaller but maintained their swimming speeds. Combined data sets for bacterial swimming speed and cell size revealed highest grazing losses for moderately motile bacteria with a cell size between 0.2 and 0.4 μm3. Grazing mortality was lowest for cells of >0.5 μm3 and small, highly motile bacteria. Survival efficiencies of >95% for the ultramicrobacterial isolate CP-1 (≤0.1 μm3, >50 μm s−1) illustrated the combined protective action of small cell size and high motility. Our findings suggest that motility has an important adaptive function in the survival of planktonic bacteria during protozoan grazing.  相似文献   

2.
We studied the impact of grazing and substrate supply on the size structure of a freshwater bacterial strain (Flectobacillus sp.) which showed pronounced morphological plasticity. The cell length varied from 2 to >40 μm and encompassed rods, curved cells, and long filaments. Without grazers and with a sufficient substrate supply, bacteria grew mainly in the form of medium-sized rods (4 to 7 μm), with a smaller proportion (<10%) of filamentous forms. Grazing experiments with the bacterivorous flagellate Ochromonas sp. showed that freely suspended cells of <7 μm were highly vulnerable to grazers, whereas filamentous cells were resistant to grazing and became enriched during predation. A comparison of long-term growth in carbon-limited chemostats with and without grazers revealed that strikingly different bacterial populations developed: treatments with flagellates were composed of >80% filamentous cells. These attained a biomass comparable to that of populations in chemostats without grazers, which were composed of medium-sized rods and c-shaped cells. Carbon starvation resulted in a fast decrease in cell length and a shift towards small rods, which were highly vulnerable to grazing. Dialysis bag experiments in combination with continuous cultivation revealed that filament formation was significantly enhanced even without direct contact of bacteria with bacterivores and was thus probably stimulated by grazer excretory products.  相似文献   

3.
Size-selective grazing of three heterotrophic nanoflagellates (with cell sizes of 21, 44, and 66 mum) isolated from Lake Arlington, Texas was examined by using a natural mixture of fluorescence labelled lake bacteria. Sizes of ingested bacteria in food vacuoles were directly measured. Larger bacterial cells were ingested at a frequency much higher than that at which they occurred in the assemblage, indicating preferential flagellate grazing on the larger size classes within the lake bacterioplankton. Water samples were collected biweekly from June through September, 1989, fractionated by filtration, and incubated for 40 h at in situ temperatures. The average bacterial size was always larger in water which was passed through 1-mum-pore-size filters (1-mum-filtered water) (which was predator free) than in 5-mum-filtered water (which contained flagellates only) or in unfiltered water (in which all bacterivores were present). The increase of bacterial-cell size in 1-mum-filtered water was caused by a shift in the size structure of the bacterioplankton population. Larger cells became more abundant in the absence of flagellate grazing.  相似文献   

4.
We studied the impact of ambient levels of solar ultraviolet B (UVB) radiation on the planktonic microbial food web (viruses, heterotrophic bacteria, heterotrophic nanoflagellates and ciliates) of a high-mountain lake (2417 m above sea level) under in situ conditions for 16 days. Enclosures of 1 m3 receiving either the full sunlight spectrum or sunlight without UVB radiation were suspended at the lake surface. We found that the abundance of heterotrophic nanoflagellates was always lower in the +UVB treatment than in the -UVB one. In addition, bacterial consumption, measured by the disappearance of fluorescently labelled bacteria, was significantly (P < 0.05) reduced in the +UVB treatment. The abundance of non-filamentous bacteria (<10 m long) was also lower in the +UVB treatment, suggesting a direct effect of UVB on their growth. This was supported by the significantly (P < 0.05) lower cell-specific activity ([3H])thymidine incorporation) found on the fifth day of the experiment. In contrast, UVB radiation had no effect on filamentous bacteria (>1 m long), which represented only a small fraction of the total abundance (<4%), but up to 70% of the total bacterial biovolume. Ciliates, mainly Urotricha pelagica and Urotricha furcata, were less impacted by UVB radiation, although the net growth rate during the first week of the experiment was lower in the +UVB treatment than in the -UVB one (0.22 and 0.39 day-1, respectively). The abundance of virus-like particles during the first week of the experiment was higher in the -UVB treatment. After reaching the maximum value for the interaction viruses x bacteria, viral abundance decreased dramatically (by 85%) in both treatments with a decay rate of 0.017 h-1. This study illustrates the complexity in assessing the impact of UVB radiation when more than one trophic level is considered and indicates the existence of different sensitivity to UVB radiation among components of the microbial food web.   相似文献   

5.
Current models suggest that (i) filamentous bacteria are protected against predation by nanoflagellates, (ii) prey size is positively correlated with prey-predator contact probability, and (iii) contact probability is mainly responsible for size-selective predation by interception-feeding flagellates. We used five strains of filamentous bacteria and one bacterivorous nanoflagellate, Ochromonas sp. strain DS, to test these assumptions. The five strains, including one spirochete and four Betaproteobacteria strains, were isolated by the filtration-acclimatization method. All five strains possess flexible cells, but they differ in average cell length, which ranged from 4.5 to 13.7 μm. High-resolution video microscopy was used to measure contact, capture, and ingestion rates, as well as selectivity of the flagellate feeding. Growth and feeding experiments with satiating and nonsatiating food conditions, as well as experiments including alternative well-edible prey, were performed. In contrast to predictions by current models, the flagellate successfully consumed all the tested filamentous strains. The ingestion rate was negatively correlated with bacterial length. On the other hand, the lengths of the filamentous bacteria were not positively correlated to the contact rate and capture rate but were negatively correlated to ingestion efficiency. In experiments including alternative nonfilamentous prey, the flagellates showed negative selection for filamentous bacteria, which was independent of food concentration and is interpreted as a passive selection. Our observations indicate that (i) size alone is not sufficient to define a refuge for filamentous bacteria from nanoflagellate predation and (ii) for the investigated filamentous bacteria, prey-predator contact probability could be more influenced by factors other than the prey size.  相似文献   

6.
Many experimental studies on detritus decomposition revealed a comparable microbial succession after the addition of a substrate pulse: from small, freely suspended single bacteria at the beginning, to more complex and larger growth forms during a later stage, accompanied by the appearance of bacterivorous protists. We examined in three model experiments with different organic carbon sources whether this shift in bacterial size structure is linked to the grazing impact of bacterivores. In short‐term (8–10 d) microcosm experiments we added natural dissolved and particulate detritus (macrophyte leaves and leachate, dead phytoplankton cells) as an organic substrate source. By the use of size‐fractionated inocula and eucaryotic inhibitors we obtained treatments without protists, in which bacteria developed without predation. These were compared, by measurements of bacterial activity and microscopical analysis of bacterial size structure, to incubations in which either cultured heterotrophic nanoflagellates or a natural protist assemblage was included in the inoculum. The presence of bacterial grazers resulted in a 50–90% reduction of bacterial biomass compared to grazer‐free trials. The selective removal of freely suspended bacteria produced a very different relative composition of bacterial biomass: it became dominated by large, grazing‐resistant forms such as filaments and cells attached to particles or clustered in small aggregates. In grazer‐free treatments, bacterial biomass was always dominated (>80%) by free‐living, single bacterial cells. The time course of the bacterial development suggested different underlying mechanisms for the appearance of predation resistant filamentous and of aggregated or attached bacteria. As bacterial aggregates developed in approximately similar amounts with and without grazers no specific growth stimulation by protists could be detected. In contrast, concentrations of filamentous bacteria were 2–10 times higher in treatments with protists, thus indicating a stimulation of this growth form during enhanced grazing pressure. Measurements of ectoenzymatic activity and H‐leucine uptake indicated that microbial activity was also shifted to larger size fractions. In most cases more than 50% of bacterial activity in treatments with protists was associated with the size fraction>10 μm whereas this value was <2% without grazers. Grazing by protists also enhanced the specific activity of the bacterial assemblage which is in contrast to an assumed lower competitive ability of complex bacterial growth forms. The results imply that the selective force of bacterivory in nutrient‐rich environments changes the structure and possibly the function of aquatic bacteria and their position in the food web, making protist‐resistant bacteria more vulnerable to metazoan filter feeders and detritivores, and possibly also subject to sedimentation.  相似文献   

7.
We present an improvement of the INT [2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride)] reduction method using Cyto-Clear slides, the fluorochrome DAPI (4(prm1),6(prm1)-diamidino-2 phenylindole), and an image analysis system. With this method we were able to simultaneously measure cell dimensions and formazan crystals as indicators of the respiratory activity of single bacteria. The method was tested on a natural bacterioplankton community of an oligotrophic high mountain lake (Gossenkollesee, Tyrolean Alps, Austria, 2,417 m above sea level) in midwinter ((symbl)1-m-thick ice and snow layer; dissolved organic carbon, 0.51 mg liter(sup-1); water temperature, 2(deg)C). About 25% of planktonic bacteria were respiratorily active, and a complex pattern of bacterial morphologies and specific respiratory activities was observed during a time series of INT incubation. Rod-shaped bacteria with cell lengths of between 1.6 and 4.8 (mu)m already showed visible activity after 0.5 h of INT incubation. Small cells (rods and cocci) in the size fraction <1.6 (mu)m and long filamentous bacteria (up to 120 (mu)m) were visibly active only after a 2-h incubation period. After 8 h of incubation, more than 90% of all cells between 3.2 and 6.4 (mu)m in cell length were respiratorily active, whereas only 5% of cells <1.6 (mu)m and 50% of filamentous bacteria contained formazan grains. We could distinguish five major bacterial phenotypes that showed distinct activity patterns with respect to incubation period and numbers and sizes of formazan crystals. There was no correlation between the total formazan volume per active cell and bacterial cell volume, and for any size class of active bacteria, total formazan volumes varied by about 2 orders of magnitude after 8 h of incubation. This indicates that cell-specific activity is extremely variable and is not related to size and that a small portion of all cells may account for the overall activity.  相似文献   

8.
Bacterium-specific viruses have attracted much interest in aquatic microbial ecology because they have been shown to be about 10 times more abundant than planktonic bacteria. So far most of the studies of interactions of planktonic bacteria and viruses have been done in marine environments, and very little is known about these interactions in lakes. Therefore, we studied phage proliferation in Lake Constance, a large mesotrophic lake in Germany. We enumerated bacteria and quantified the fraction of bacteria with mature intracellular phage particles and the number of free viruses by transmission electron microscopy. Between the end of March and early August 1992, peaks of bacterial abundance were followed in 1 to 2 weeks by peaks in the fraction of bacteria containing visible phage particles (0 to 1.7%) and in the number of free viruses (1 x 10(sup7) to 4 x 10(sup7) ml(sup-1)). We estimated that 1 to 17% +/- 12% of all bacteria were phage infected, implying that phage-induced mortality was <34% +/- 24% of total mortality. A direct comparison between phage-induced mortality, the net decrease of bacterial numbers, and bacterial growth rates indicated that phage-induced mortality accounted for <11% of total bacterial mortality during the phytoplankton spring bloom and 18 to 21% following the bloom. Estimated burst sizes ranged from 21 to 121 phages. Phage production rates of 0.5 x 10(sup6) to 2.5 x 10(sup6) ml(sup-1) day(sup-1) accounted for 70 to 380% of the observed net increase rates of free phages, implying high rates of simultaneous phage decay. The cyclic dynamics between bacteria and phages and the varying size structure of the intracellular mature phage particles suggested that phage infection was important in structuring the bacterial host assemblage during the study period.  相似文献   

9.
Plankton community structure and major pools and fluxes of carbon were observed before and after culmination of a bloom of cyanobacteria in eutrophic Frederiksborg Slotssø, Denmark. Biomass changes of heterotrophic nanoflagellates, ciliates, microzooplankton (50 to 140 μm), and macrozooplankton (larger than 140 μm) were compared to phytoplankton and bacterial production as well as micro- and macrozooplankton ingestion rates of phytoplankton and bacteria. The carbon budget was used as a means to examine causal relationships in the plankton community. Phytoplankton biomass decreased and algae smaller than 20 μm replacedAphanizomenon after the culmination of cyanobacteria. Bacterial net production peaked shortly after the culmination of the bloom (510 μg C liter?1 d?1 and decreased thereafter to a level of approximately 124 μg C liter?1 d?1. Phytoplankton extracellular release of organic carbon accounted for only 4–9% of bacterial carbon demand. Cyclopoid copepods and small-sized cladocerans started to grow after the culmination, but food limitation probably controlled the biomass after the collapse of the bloom. Grazing of micro- and macrozooplankton were estimated from in situ experiments using labeled bacteria and algae. Macrozooplankton grazed 22% of bacterial net production during the bloom and 86% after the bloom, while microzooplankton (nauplii, rotifers and ciliates larger than 50 μm) ingested low amounts of bacteria and removed 10–16% of bacterial carbon. Both macro-and microzooplankton grazed algae smaller than 20 μm, although they did not control algal biomass. From calculated clearance rates it was found that heterotrophic nanoflagellates (40–440 ml?1) grazed 3–4% of the bacterial production, while ciliates smaller than 50 μm removed 19–39% of bacterial production, supporting the idea that ciliates are an important link between bacteria and higher trophic levels. During and after the bloom ofAphanizomenon, major fluxes of carbon between bacteria, ciliates and crustaceans were observed, and heterotrophic nanoflagellates played a minor role in the pelagic food web.  相似文献   

10.
The concentrations of dissolved DNA and nanoflagellates were found to covary during a study of diel dynamics of the microbial food web in the Adriatic Sea. This observation was further investigated in a continuous seawater culture when nanoflagellates were fed bacteria grown in filtered seawater. Analysis of dissolved organic phosphorus and dissolved DNA showed a sixfold increase of dissolved DNA in the presence of the nanoflagellates (Ochromonas sp.). The amount of DNA released suggested that the majority of the consumed bacterial DNA was ejected. Phagotrophic nanoflagellates thus represent an important source of origin for dissolved DNA. The rate of breakdown of dissolved DNA and release of inorganic phosphorus in the pelagic ecosystem is suggested to be dependent on the ambient phosphate pool. In the P-limited northern Adriatic Sea, rapid degradation of the labelled DNA could be demonstrated, whereas the N-limited southern California bight water showed a much lower rate. Phosphorus originating from dissolved DNA was shown to be transferred mainly to organisms in the <3-μm-size fractions. On the basis of the C/P ratios, we suggest that a significant fraction of the phosphorus demand by the autotrophs may be sustained by the released DNA during stratified conditions. Thus, the nucleic acid-rich bacterial biomass grazed by protozoa plays an important role in the biogeochemical cycling of phosphorus in the marine environment.  相似文献   

11.
Sphingomonas sp. strain RB2256 was isolated from Resurrection Bay in Alaska and possibly represents the dominant bacterial species in some oligotrophic marine environments. Strain RB2256 has a high-affinity nutrient uptake system when growing under nutrient-limiting conditions, and growing cells are very small (<0.08 (mu)m(sup3)). These characteristics indicate that RB2256 is highly evolved for withstanding nutrient limitations and grazing pressure by heterotrophic nanoflagellates. In this study, strain RB2256 was subjected to nutrient starvation and other stresses (high temperature, ethanol, and hydrogen peroxide). It was found that growing cells were remarkably resistant, being able to survive at a temperature of 56(deg)C, in 25 mM hydrogen peroxide, or in 20% ethanol. In addition, growing cells were generally as resistant as starved cells. The fact that vegetative cells of this strain are inherently resistant to such high levels of stress-inducing agents indicates that they possess stress resistance mechanisms which are different from those of other nondifferentiating bacteria. Only minor changes in cell volume (0.03 to 0.07 (mu)m(sup3)) and maximum specific growth rate (0.13 to 0.16 h(sup-1)) were obtained for cells growing in media with different organic carbon concentrations (0.8 to 800 mg of C per liter). Furthermore, when glucose-limited, chemostat-grown cultures or multiple-nutrient-starved batch cultures were suddenly subjected to excess glucose, maximum growth rates were reached immediately. This immediate response to nutrient upshift suggests that the protein-synthesizing machinery is constitutively regulated. In total, these results are strong evidence that strain RB2256 possesses novel physiological and molecular strategies that allow it to predominant in natural seawater.  相似文献   

12.
Current models suggest that (i) filamentous bacteria are protected against predation by nanoflagellates, (ii) prey size is positively correlated with prey-predator contact probability, and (iii) contact probability is mainly responsible for size-selective predation by interception-feeding flagellates. We used five strains of filamentous bacteria and one bacterivorous nanoflagellate, Ochromonas sp. strain DS, to test these assumptions. The five strains, including one spirochete and four Betaproteobacteria strains, were isolated by the filtration-acclimatization method. All five strains possess flexible cells, but they differ in average cell length, which ranged from 4.5 to 13.7 micro m. High-resolution video microscopy was used to measure contact, capture, and ingestion rates, as well as selectivity of the flagellate feeding. Growth and feeding experiments with satiating and nonsatiating food conditions, as well as experiments including alternative well-edible prey, were performed. In contrast to predictions by current models, the flagellate successfully consumed all the tested filamentous strains. The ingestion rate was negatively correlated with bacterial length. On the other hand, the lengths of the filamentous bacteria were not positively correlated to the contact rate and capture rate but were negatively correlated to ingestion efficiency. In experiments including alternative nonfilamentous prey, the flagellates showed negative selection for filamentous bacteria, which was independent of food concentration and is interpreted as a passive selection. Our observations indicate that (i) size alone is not sufficient to define a refuge for filamentous bacteria from nanoflagellate predation and (ii) for the investigated filamentous bacteria, prey-predator contact probability could be more influenced by factors other than the prey size.  相似文献   

13.
A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.  相似文献   

14.
Interactions of the main components of microbial planktonic food web (bacteria, heterotrophic nanoflagellates, and viruses) were studied in a protected overgrown littoral zone of the Rybinsk Reservoir (Upper Volga). The effect of colonial bird settlements (the Laridae family) on these processes was determined. The following systems exhibited significant negative correlations: “heterotrophic nanoflagellates–large rod-shaped bacteria” (“predator–prey”), “viruses-bacteriophages–bacterial products” (“parasite–host”) and “heterotrophic nanoflagellates–viruses-bacteriophages”. Relations between biotic factors controlling bacterial development were more pronounced outside the zone affected by colonial bird settlements. Near the bird colony the role of viruses in mortality of planktonic bacteria increased. Reproduction of bacterial cells accelerated in response to the increase in feeding activity of heterotrophic nanoflagellates. Virusesbacteriophages and heterotrophic nanoflagellates probably eliminate different targets until medium-sized cells become predominant in the bacterial community. Then heterotrophic nanoflagellates consume bacterial cells infected with viruses.  相似文献   

15.
The microbial loop of a naturally acidic bog lake, Große Fuchskuhle (Northeastern Germany), that had been artificially divided into 4 basins, was investigated. In the northeast (NE) and southwest (SW) basins, which differ strongly in chemistry and primary production, we conducted intensive studies of the main carbon fluxes through microbial food webs. In the less acidic, NE basin, much higher phytoplankton as well as bacterial biomass and production were found in parallel with negligible numbers of larger zooplankters. Weakly top-down controlled populations of protists were characterized by an exceptionally low numerical proportion of heterotrophic nanoflagellates (HNF) to ciliates (-1.5-3.5). The ciliate community was dominated by a scuticociliate, Cyclidium sp. (>95% of total ciliates), with an estimated grazing rate equal to 46–80% of heterotrophic bacterial production. In contrast, in the more humic, SW basin, both phyto- and bacterioplankton dynamics seemed to be top-down controlled by abundant populations of small fine-filter feeding cladocerans, Ceriodaphnia quadrangula and Diaphanosoma brachyurum. Consequently, ciliates disappeared from the food web structure of the SW basin, HNF dropped to negligible numbers and bacteria showed very uniform morphology, dominated by small cocci or short rods. Our investigations have shown that the division of the lake into separate compartments can lead to very different microbial food web structures with extreme species compositions.  相似文献   

16.
The rates of ingestion of natural bacterial assemblages by natural populations of zooplankton (>50 μm in size) were measured during a 19-day period in eutrophic Frederiksborg Slotssø, Denmark, as well as in experimental enclosures (containing 5.3 m3 of lake water). The fish and nutrients of the enclosures were manipulated. In enclosures without fish, large increases in ingestion by zooplankton >140 μm in size were found (up to 3 μg of C liter−1 h−1), compared with values less than 0.3 μg of C liter−1 h−1 in the enclosures with fish and in the open lake. Daphnia cucullata and D. galeata dominated the community of zooplankton of >140 μm. Ingestion rates for zooplankton between 50 and 140 μm decreased after a period of about 8 days, in all enclosures and in the lake, to values below 0.1 μg of C liter−1 h−1. On the last 2 sampling days, somewhat higher values were observed in the enclosures with fish present. The >50-μm zooplankton ingested 48 to 51% of the bacterial net secondary production in enclosures without fish, compared to 4% in the enclosures with added fish. Considering the sum of bacterial secondary production plus biomass change, 35 to 41% of the available bacteria were ingested by zooplankton of >50 μm in the enclosures without fish, compared with 4 to 6% in the enclosures with added fish and 21% in the open lake. Fish predation reduced the occurrence of zookplankton sized >50 μm and thus left a large proportion of the available bacteria to zooplankton sized <50 μm. In fact, there were 4.6 × 103 to 5.0 × 103 flagellates (4 to 8 μm in size) ml−1 in the enclosures with fish added as well as in the lake, compared with 0.5 × 102 to 2.3 × 102 ml−1 in the enclosures without fish. This link in the food chain was reduced when fish predation on zooplankton was eliminated and a direct route of dissolved organic matter, via the bacteria to the zooplankton, was established.  相似文献   

17.
Thomas Weisse 《Hydrobiologia》1990,191(1):111-122
A considerable portion of the pelagic energy flow in Lake Constance (FRG) is channelled through a highly dynamic microbial food web. In-situ experiments using the lake water dilution technique according to Landry & Hasset (1982) revealed that grazing by heterotrophic nanoflagellates (HNF) smaller than 10 µm is the major loss factor of bacterial production. An average flagellate ingests 10 to 100 bacteria per hour. Nano- and micro-ciliates have been identified as the main predators of HNF. If no other food is used between 3 and 40 HNF are consumed per ciliate and hour. Other protozoans and small metazoans such as rotifers are of minor importance in controlling HNF population dynamics.Clearance rates varied between 0.2 and 122.8 nl HNF–1 h–1 and between 0.2 and 53.6 µl ciliate–1 h–1, respectively.Ingestion and clearance rates measured for HNF and ciliates are in good agreement with results obtained by other investigators from different aquatic environments and from laboratory cultures. Both the abundance of all three major microheterotrophic categories — bacteria, HNF, and ciliates — and the grazing pressure within the microbial loop show pronounced seasonal variations.  相似文献   

18.
The predation of a luminescence-marked strain of Pseudomonas fluorescens by the soil ciliate Colpoda steinii was studied in soil microcosms. Bacterial cells were introduced in either small (neck diameter, <6 (mu)m) or intermediate-sized (neck diameter, 6 to 30 (mu)m) pores in the soil by inoculation at appropriate matric potentials, and ciliates were introduced into large pores (neck diameter, 30 to 60 (mu)m). Viable cell concentrations of bacteria introduced into intermediate-sized pores decreased at a greater rate than those in small pores, with reductions in bacterial populations being accompanied by an increase in viable cell numbers of the ciliate. The data indicate that the location of bacteria in small pores provides significant protection from predation. In the absence of C. steinii, the level of metabolic activity of the bacterial population, measured by luminometry, decreased at a greater rate than cell number, and the level of luminescence cell(sup-1) consequently decreased. The decrease in levels of luminescence indicates a loss of activity due to starvation. During predation by C. steinii, the level of the activity of cells introduced into small pores fell in a similar manner. The level of cell activity was, however, significantly greater for cells introduced into intermediate-sized pores, despite their greater susceptibility to predation. The data suggest that increased activity arises from a release of nutrients by the predator and the greater accessibility of bacteria to nutrients in larger pores. Nutrient amendment of microcosms resulted in increases in bacterial populations to sustained, higher levels, while levels of luminescence increased transiently. The predation of cells introduced into intermediate-sized pores was greater, and there was also evidence that the level of activity of surviving bacteria was greater for bacteria in intermediate-sized but not small pores.  相似文献   

19.
1. We performed a mesocosm experiment to investigate the structuring and cascading effects of two predominant crustacean mesozooplankton groups on microbial food web components. The natural summer plankton community of a mesotrophic lake was exposed to density gradients of Daphnia and copepods. Regression analysis was used to reveal top–down impacts of mesozooplankton on protists and bacteria after days 9 and 15. 2. Selective grazing by copepods caused a clear trophic cascade via ciliates to nanoplankton. Medium‐sized (20–40 μm) ciliates (mainly Oligotrichida) were particularly negatively affected by copepods whereas nanociliates (mainly Prostomatida) became more abundant. Phototrophic and heterotrophic nanoflagellates increased significantly with increasing copepod biomass, which we interpret as an indirect response to reduced grazing pressure from the medium‐sized ciliates. 3. In Daphnia‐treatments, ciliates of all size classes as well as nanoflagellates were reduced directly but the overall predation effect became most strongly visible after 15 days at higher Daphnia biomass. 4. The response of bacterioplankton involved only modest changes in bacterial biomass and cell‐size distribution along the zooplankton gradients. Increasing zooplankton biomass resulted either in a reduction (with Daphnia) or in an increase (with copepods) of bacterial biovolume, activity and production. Patterns of bacterial diversity, as measured by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), showed no distinct grouping after 9 days, whereas a clear treatment‐coupled similarity clustering occurred after 15 days. 5. The experiment demonstrated that zooplankton‐mediated predatory interactions cascade down to the bacterial level, but also revealed that changes occurred rather slowly in this summer plankton community and were most pronounced with respect to bacterial activity and composition.  相似文献   

20.
Temporal dynamics of the microbial food web in the Barents Sea and adjacent water masses in the European Arctic are to a large extent unknown. Seasonal variation in stocks and production rates of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was investigated in the upper 50 m of the high-latitude Kongsfjorden, Svalbard, during six field campaigns between March and December 2006. Heterotrophic bacteria, picoplankton and nanoflagellates contributed to ecosystem structure and function in all seasons. Activity within the microbial food web peaked during spring bloom in April, parallel to low abundances of mesozooplankton. In the nutrient-limited post-bloom scenario, an efficient microbial loop, fuelled by dissolved organic carbon from abundant mesozooplankton feeding on phytoplankton and protozooplankton, facilitated maximum integrated primary production rates. A tight microbial food web consisting of heterotrophic bacteria and phototrophic and heterotrophic picoplankton and nanoflagellates was found in the stratified water masses encountered in July and September. Microbial stocks and rates were low but persistent under winter conditions. Seasonal comparisons of microbial biomass and production revealed that structure and function of the microbial food web were fundamentally different during the spring bloom when compared with other seasons. While the microbial food web was in a regenerative mode most of the time, during the spring bloom, a microbial transfer mode represented a trophic link for organic carbon in time and space. The microbial food web’s ability to fill different functional roles in periods dominated by new and regenerated production may enhance the ecological flexibility of pelagic ecosystems in the present era of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号