首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine.  相似文献   

2.
Distribution and phylogenetic diversity of microbial communities in hot, deep underground environments in the Hishikari epithermal gold mine, southern part of Kyushu, Japan, were evaluated using molecular phylogenetic analyses. Samples included drilled cores such as andesitic volcanic rock (0.95-1.78 Ma) and the oceanic sedimentary basement rock of Shimanto-Supergroup (100 Ma), as well as geothermal hot aquifer waters directly collected from two different sites: AW-site (71.5 degrees C, pH 6.19) and XW-site (85.0 degrees C, pH 6.80) at a depth of 350 mbls (meters below land surface). Based on PCR-amplified 16S rRNA gene clone analysis, the microbial communities in the drilled cores and the hot aquifer water from the XW-site consisted largely of the 16S rRNA gene sequences, closely related to the sequences often found in marine environments, while the aquifer water from the AW-site contained 16S rRNA gene sequences representing members of Aquificales, thermophilic methanotrophs within the gamma-subdivision of the Proteobacteria and uncultivated strains within the beta-subdivision of Proteobacteria. The cultivable microbial community detected by enrichment cultivation analysis largely matched that detected by the culture-independent molecular analysis.  相似文献   

3.
A culture-independent molecular phylogenetic analysis was carried out to study the prokaryotic diversity in two soil samples collected from the subsurface (1.34 km depth) of the former Homestake gold mine, Lead, South Dakota, USA at two sites, the Ross shaft and number 6 Winze. Microbial community analyses were performed by cloning and sequencing of 16S rRNA genes retrieved directly from soil samples. Geochemical characterization of soils revealed high amount of toxic metals such as As, Cd, Co, Cr, Cu, Ni, Pb, Zn, and U at both the sites. Phylogenetic analyses showed that soil samples were predominantly composed of phylotypes related to phylum Proteobacteria. Other phyla detected in libraries were Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Verrucomicrobia, and candidate divisions OP10 and TM7. The majority (>95%) of the phylotypes retrieved in the libraries were most closely related to environmental sequences from yet-uncultured bacteria representing a hitherto unidentified diversity. The archaeal communities at both the sites exhibited lower diversity and were most closely affiliated to uncultivated species within the Crenarchaeota. Results showed the existence of diverse microbial populations in deep subsurface environment of the Homestake gold mine. Statistical analyses demonstrated that each site harbored phylogenetically distinct microbial populations that were more diverse at Ross site compare to winze site.  相似文献   

4.
Change of bacterial community occurring along a hot water stream in the Hishikari gold mine, Japan, was investigated by applying a combination of various culture-independent techniques. The stream, which is derived from a subsurface anaerobic aquifer containing plentiful CO2, CH4, H2, and NH4+, emerges in a mine tunnel 320 m below the surface providing nutrients for a lush microbial community that extends to a distance of approximately 7 m in the absence of sunlight-irradiation. Over this distance, the temperature decreases from 69°C to 55°C, and the oxidation-reduction potential increases from –130 mV to +59 mV. In the hot upper reaches of the stream, the dominant phylotypes were: 1) a deeply branching lineage of thermophilic methane-oxidizing -Proteobacteria, and 2) a thermophilic hydrogen- and sulfur-oxidizing Sulfurihydrogenibium sp. In contrast, the prevailing phylotypes in the middle and lower parts of the stream were closely related to ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira spp.. Changes in the microbial metabolic potential estimated by competitive PCR analysis of genes encoding the enzymes, particulate methane monooxygenase (pmoA), ammonia monooxygenase (amoA), and putative nitrite oxidoreductase (norB), also substantiated the community shift indicated by 16S rRNA gene analysis. The diversity of putative norB lineages was assessed for the first time in the hot water environment. Estimation of dominant phylotypes by whole-cell fluorescent in situ hybridization and changes in inorganic nitrogen compounds such as decreasing ammonium and increasing nitrite and nitrate in the mat-interstitial water along the stream were consistent with the observed transition of the bacterial community structure in the stream.  相似文献   

5.
A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.  相似文献   

6.
A taxonomic survey was conducted to determine the microbial diversity held within the Harbor Branch Oceanographic Marine Microbial Culture Collection (HBMMCC). The collection consists of approximately 17,000 microbial isolates, with 11,000 from a depth of greater than 150 ft seawater. A total of 2273 heterotrophic bacterial isolates were inventoried using the DNA fingerprinting technique amplified rDNA restriction analysis on approximately 750-800 base pairs (bp) encompassing hypervariable regions in the 5' portion of the small subunit (SSU) 16S rRNA gene. Restriction fragment length polymorphism patterns obtained from restriction digests with RsaI, HaeIII, and HhaI were used to infer taxonomic similarity. SSU 16S rDNA fragments were sequenced from a total of 356 isolates for more definitive taxonomic analysis. Sequence results show that this subset of the HBMMCC contains 224 different phylotypes from six major bacterial clades (Proteobacteria (Alpha, Beta, Gamma), Cytophaga, Flavobacteria, and Bacteroides (CFB), Gram + high GC content, Gram + low GC content). The 2273 microorganisms surveyed encompass 834 alpha-Proteobacteria (representing 60 different phylotypes), 25 beta-Proteobacteria (3 phylotypes), 767 gamma-Proteobacteria (77 phylotypes), 122 CFB (17 phylotypes), 327 Gram + high GC content (43 phylotypes), and 198 Gram + low GC content isolates (24 phylotypes). Notably, 11 phylotypes were < or =93% similar to the closest sequence match in the GenBank database even after sequencing a larger portion of the 16S rRNA gene (approximately 1400 bp), indicating the likely discovery of novel microbial taxa. Furthermore, previously reported "uncultured" microbes, such as sponge-specific isolates, are part of the HBMMCC. The results of this research will be available online as a searchable taxonomic database (www.hboi.edu/dbmr/dbmr_hbmmd.html).  相似文献   

7.
Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. In this study, surrogate geological media contained in a porous receptacle were incubated in a well within the saturated zone of a pristine region of an aquifer to capture populations from the extant communities. After an 8-week incubation, the media were recovered, and the microbial community that developed on each medium was compared to the community recovered from groundwater and native sediments from the same region of the aquifer, using 16S DNA coding for rRNA (rDNA)-based terminal restriction fragment length polymorphism (T-RFLP). The groundwater and sediment communities were highly distinct from one another, and the communities that developed on the various media were more similar to groundwater communities than to sediment communities. 16S rDNA clone libraries of communities that developed on particles of a specular hematite medium incubated in the same well as the media used for T-RFLP analysis were compared with those obtained from an acidic, uranium-contaminated region of the same aquifer. The hematite-associated community formed in the pristine area was highly diverse at the species level, with 25 distinct phylotypes identified, the majority of which (73%) were affiliated with the beta-Proteobacteria. Similarly, the hematite-associated community formed in the contaminated area was populated in large part by beta-Proteobacteria (62%); however, only 13 distinct phylotypes were apparent. The three numerically dominant clones from the hematite-associated community from the contaminated site were affiliated with metal- and radionuclide-tolerant or acidophilic taxa, consistent with the environmental conditions. Only two populations were common to both sites.  相似文献   

8.
Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. In this study, surrogate geological media contained in a porous receptacle were incubated in a well within the saturated zone of a pristine region of an aquifer to capture populations from the extant communities. After an 8-week incubation, the media were recovered, and the microbial community that developed on each medium was compared to the community recovered from groundwater and native sediments from the same region of the aquifer, using 16S DNA coding for rRNA (rDNA)-based terminal restriction fragment length polymorphism (T-RFLP). The groundwater and sediment communities were highly distinct from one another, and the communities that developed on the various media were more similar to groundwater communities than to sediment communities. 16S rDNA clone libraries of communities that developed on particles of a specular hematite medium incubated in the same well as the media used for T-RFLP analysis were compared with those obtained from an acidic, uranium-contaminated region of the same aquifer. The hematite-associated community formed in the pristine area was highly diverse at the species level, with 25 distinct phylotypes identified, the majority of which (73%) were affiliated with the β-Proteobacteria. Similarly, the hematite-associated community formed in the contaminated area was populated in large part by β-Proteobacteria (62%); however, only 13 distinct phylotypes were apparent. The three numerically dominant clones from the hematite-associated community from the contaminated site were affiliated with metal- and radionuclide-tolerant or acidophilic taxa, consistent with the environmental conditions. Only two populations were common to both sites.  相似文献   

9.
In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.  相似文献   

10.
We characterized the diversity of sulphate-reducing bacteria (SRB) associated with South African gold mine boreholes and deep aquifer systems in Washington State, USA. Sterile cartridges filled with crushed country rock were installed on two hydrologically isolated and chemically distinct sites at depths of 3.2 and 2.7 km below the land surface (kmbls) to allow development of biofilms. Enrichments of sulphate-reducing chemolithotrophic (H2) and organotrophic (lactate) bacteria were established from each site under both meso- and thermophilic conditions. Dissimilatory sulphite reductase (Dsr) and 16S ribosomal RNA (rRNA) genes amplified from DNA extracted from the cartridges were most closely related to the Gram-positive species Desulfotomaculum thermosapovorans and Desulfotomaculum geothermicum, or affiliated with a novel deeply branching clade. The dsr sequences recovered from the Washington State deep aquifer systems affiliated closely with the South African sequences, suggesting that Gram-positive sulphate-reducing bacteria are widely distributed in the deep subsurface.  相似文献   

11.
Fecal microbial diversity in a strictly vegetarian woman was determined by the 16S rDNA library method, terminal restriction fragment length polymorphism (T-RFLP) analysis and a culture-based method. The 16S rDNA library was generated from extracted fecal DNA, using bacteria-specific primers. Randomly selected clones were partially sequenced. T-RFLP analysis was performed using amplified 16S rDNA. The lengths of T-RF were analyzed after digestion by HhaI and MspI. The cultivated bacterial isolates were used for partial sequencing of 16S rDNA. Among 183 clones obtained, approximately 29% of the clones belonged to 13 known species. About 71% of the remaining clones were novel "phylotypes" (at least 98% similarity of clone sequence). A total of 55 species or phylotypes were identified among the 16S rDNA library, while the cultivated isolates included 22 species or phylotypes. In addition, many new phylotypes were detected from the 16S rDNA library. The 16S rDNA library and isolates commonly included the Bacteroides group, Bifidobacterium group, and Clostridium rRNA clusters IV, XIVa, XVI and XVIII. T-RFLP analysis revealed the major composition of the vegetarian gut microbiota were Clostridium rRNA subcluster XIVa and Clostridium rRNA cluster XVIII. The dominant feature of this strictly vegetarian gut microbiota was the detection of many Clostridium rRNA subcluster XIVa and C. ramosum (Clostridium rRNA cluster XVIII).  相似文献   

12.
13.
Bacteria have been actively regulating cycles of various elements in the environment. To explore the potential bacterial role in gold biogeochemical cycling, this study analyzed the bacterial diversity of mine rock (MR) and surface soil (SS) samples from Linglong gold mine using 16S rRNA gene clone library analysis and cultivation method. From MR, 24 operational taxonomic units (OTUs) were identified from MR, covering 3 phyla and 18 genera. Meanwhile, 24 OTUs were identified from SS, including 4 phyla and 18 genera. Compared with 16S rRNA gene clone library analysis, 28 aerobic and 34 anaerobic isolates were obtained, whereas 26 aerobic and 71 anaerobic strains were isolated from SS. The cultivable bacteria were affiliated with Firmicutes, Proteobacteria and Actinobacteria phyla, and dominated by Firmicutes. These results underscore the high level of bacterial diversity in the gold mine. Our study provides information on the microbial diversity in Linglong gold mine and sheds light on the existence and potential function of bacteria in the gold biogeochemical cycling.  相似文献   

14.
Barbrook AC  Visram S  Douglas AE  Howe CJ 《Protist》2006,157(2):159-171
Dinoflagellate algae of the genus Symbiodinium are important symbionts within corals and other benthic marine animals. The molecular diversity of Symbiodinium has been described mainly by use of ribosomal DNA sequence data. We tested whether minicircle sequences, which appear to form the chloroplast genome in many dinoflagellates, could be used as a marker for molecular diversity among symbionts found in corals and sea anemones. Partial and full-length sequences for psbA were obtained from environmental samples of coral and sea anemones of wide-ranging geographical distribution. Phylogenetic trees constructed with partial psbA sequences were consistent with the known phylotypes of the isolates. Further sequencing suggested that the psbA gene is present on a minicircle in all Symbiodinium phylotypes. The length and DNA sequence of the non-coding portion of the minicircles varied considerably among Symbiodinium phylotypes. In two Symbiodinium isolates from different phylotypes an elaborate pattern of repeat sequences of unknown function was found in the non-coding region. Phylogenetic analysis of the non-coding region of the psbA minicircle indicates that minicircle sequences could be a useful chloroplast-derived marker for differentiating both closely related and distantly related Symbiodinium isolates.  相似文献   

15.
The prokaryotic phylogenetic diversity was determined for a sample associated with an in situ growth chamber deployed for 5 days on a Mid-Atlantic Ridge hydrothermal vent (23 degrees 22'N, 44 degrees 57'W). The DNA was extracted from the sample and the 16S rDNA amplified by PCR. No Archaea were detected in the sample. Eighty-seven clones containing bacterial 16S rDNA inserts were selected. Based on restriction fragment length polymorphism analysis, 47 clones were unique, however, based on comparative sequence analysis some of these were very similar, and thus only 22 clones were selected for full sequence and phylogenetic analysis. The phylotypes were dominated by epsilon-Proteobacteria (66%). The remainder formed a novel lineage within the Proteobacteria (33%). One clone formed a distinct deeply branching lineage, and was a distant relative of the Aquificales. This report further expands the growing evidence that epsilon-Proteobacteria are important members in biogeochemical cycling at deep-sea hydrothermal ecosystems, participating as epibionts and free living bacteria.  相似文献   

16.
A molecular approach based on the construction of 16S ribosomal DNA clone libraries was used to investigate the microbial diversity of an underground in situ reactor system filled with the original aquifer sediments. After chemical steady state was reached in the monochlorobenzene concentration between the original inflowing groundwater and the reactor outflow, samples from different reactor locations and from inflowing and outflowing groundwater were taken for DNA extraction. Small-subunit rRNA genes were PCR-amplified with primers specific for Bacteria, subsequently cloned and screened for variation by restriction fragment length polymorphism (RFLP). A total of 87 bacterial 16S rDNA genes were sequenced and subjected to phylogenetic analysis. The original groundwater was found to be dominated by a bacterial consortium affiliated with various members of the class of Proteobacteria, by phylotypes not affiliated with currently recognized bacterial phyla, and also by sporulating and non-sporulating sulfate-reducing bacteria. The most occurring clone types obtained from the sediment samples of the reactor were related to the beta-Proteobacteria, dominated by sequences almost identical to the widespread bacterium Alcaligenes faecalis, to low G+C gram-positive bacteria and to Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans) within the gamma subclass of Proteobacteria in the upper reactor sector. Although bacterial phylotypes originating from the groundwater outflow of the reactors also grouped within different subdivisions of Proteobacteria and low G+C gram-positive bacteria, most of the 16S rDNA sequences were not associated with the sequence types observed in the reactor samples. Our results suggest that the different environments were inhabited by distinct microbial communities in respect to their taxonomic diversity, particular pronounced between sediment attached microbial communities from the reactor samples and free-living bacteria from the groundwater in- and outflow.  相似文献   

17.
Hyperthermophilic community diversity was assessed in hot-spring streamers along gradients of temperature, pH and sulphide in northern Thailand. A hierarchical sampling design was employed to obtain biomass for culture-independent estimates of 16S rRNA gene-defined prokaryotic diversity. All springs supported several archaeal and bacterial phylotypes, including novel phylotypes that expand the known phylogenetic diversity of terrestrial hyperthermophiles. Diversity appeared significantly greater than that observed for several other geographic locations. Phylotypes belonging to the Aquificales were ubiquitous, further supporting the hypothesis that these chemolithoautotrophs are key members of all hyperthermophilic communities. The chemoorganotrophic genus Thermus was also represented by phylotypes in all springs. Other bacterial taxa represented by environmental sequences included Bacillus, Thermotoga and various unidentified Alphaproteobacteria and Betaproteobacteria. Archaeal phylotypes included the Crenarchaea Desulfurococcus, Pyrobaculum, plus several unidentified hyperthermophilic lineages. A Methanothermococcus-like Euryarchaeon was also identified, with this genus not previously known from streamer communities. A multivariate approach to the analysis of biotic and abiotic data revealed that diversity patterns were best explained by a combination of temperature and sulphide rather than by any other abiotic variable either individually or in combination.  相似文献   

18.
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member''s contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development.  相似文献   

19.
Shales play an important role in many earth system processes including coastal erosion, and they form the foundations of many engineering structures. The geobiology of the interior of pyrite-containing receding shale cliffs on the coast of northeast England was examined. The surface of the weathered shales was characterised by a thin layer of disordered authigenic iron oxyhydroxides and localised acicular, platy and aggregated gypsum, which was characterised by Raman spectroscopy, XAS and SEM. These chemical changes are likely to play an important role in causing rock weakening along fractures at the micron scale, which ultimately lead to coastal retreat at the larger scale. The surface of the shale hosts a novel, low-diversity microbial community. The bacterial community was dominated by Proteobacteria, with phylotypes closely associating with Methylocella and other members of the ??-subdivision. The second largest phylogenetic group corresponded to Nitrospira. The archaeal 16S rRNA phylotypes were dominated by a single group of sequences that matched phylotypes reported from South African gold mines and possessed ammonia monooxygenase (amoA) genes. Both the phylogenetic and the mineral data show that acidic microenvironments play an important role in shale weathering, but the shale has a higher microbial diversity than previously described pyritic acid mine drainage sites. The presence of a potentially biogeochemically active microbial population on the rock surface suggests that microorganisms may contribute to early events of shale degradation and coastal erosion.  相似文献   

20.
During ODP Leg 201 microbial communities in Eastern Equatorial Pacific Ocean and Peru Margin sediments were investigated. The sediment layers sampled extended down to 420 m below the sea floor, with estimated ages of up to 40 million years. Contamination-free anoxic slurries were inoculated into media containing different substrate combinations, all at micromolar concentration. These culture media were designed for a broad spectrum of physiological groups. A total of 162 pure cultures were isolated that could be grouped into 19 different phylotypes based on 16S rRNA gene analysis. The isolates belonged to the Alpha-, Gamma- and Deltaproteobacteria, the Firmicutes, Actinobacteria, and Bacteroidetes. The genera most frequently isolated were Bacillus (68 isolates) and Rhizobium (40 isolates). Comparison of strains with the same phylotypes by enterobacterial repetitive intergenic consensus (ERIC-PCR) analysis revealed the presence of several subgroups that did not correlate with medium, sediment depth or sampling site. The majority of the isolates, although obtained from anoxic environments and isolated under strictly anoxic conditions, turned out to be facultativly aerobic. Physiologically, the isolates were characterized as generalists, able to utilize a broad variety of electron donors with either oxygen, nitrate and in some cases manganese oxides as electron acceptors. The diversity inferred from physiological tests was even higher than that on the phylogenetic or genomic level. The outcome of the contamination tests, the isolation of close relatives of already known subsurface bacteria, the repeated finding of the same phylotype from different sites and the level of diversity present in the culture collection strongly suggest that indigenous deep-biosphere bacteria had been isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号