首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When parasitizing Coleus blumei Benth., grown in quartz sandculture and fed with 0.2, 1 or 5 mM nitrate, the biomass productionof Cuscuta reflexa Roxb. was inhibited to a similar extent asthat of the host supplied limiting concentrations of nitrate.In the presence of Cuscuta the growth and dry matter increaseof the host plant was severely inhibited. However, dry matterproduction of host plus parasite was only slightly less thanor at 0.2 mM nitrate almost the same as that of uninfected Coleusplants. Under all conditions of nitrate nutrition, parasitismby Cuscuta led to a substantial increase in photosynthesis inhost leaves under light-saturating conditions and in transpiration.Particularly with 0.2 mM and mM  相似文献   

2.
A study was made of the alterations in growth characteristics of Cuscuta Campestris, Cuscuta indecora and Cuscuta reflexa on Medicago sativa as a consequence of a limitation in light intensity. There was a decrease in the content of dry solids, protein and total phosphorus in the filament mass. A decrease in these parameters occurred also in the tissues of the host, but was less pronounced that in the parasite. The response by the host to parasite growth was not always the same in the shade as in light. Phosphorus showed a distinct tendency toward firm retention in the infection complex in the dark.  相似文献   

3.
Protoplasts isolated from the apical segments of Cuscuta reflexa exhibited blue light-sensitive PM-linked NADH oxidase activity and increased rate of Ca2+-uptake in presence of NADH in dark, which was also stimulated by blue light. Contrary to marginal inhibition by Con A treatment, the ATPase inhibitors significantly inhibited the Ca2+ uptake by the protoplasts both in dark and under blue light. The Ca2+-calmodulin antagonists, W-7 and calmidazolium, also inhibited Ca2+-uptake by protoplasts under similar conditions. The state of PM polarization was monitored by the fluorescent dye 9-amino acridine. It was observed that PM-linked NADH oxidation caused hyperpolarization of the membrane, the exposure of which to blue light resulted in membrane depolarization. The presence of Ca2+-calmodulin antagonists or Con A treatment completely abolished the blue light-induced membrane depolarization. It is argued that these actities at the PM, having some glycoproteic components, are functionally closely involved in blue light-induced signal transduction in Cuscuta  相似文献   

4.

Background  

The holoparasitic plant genus Cuscuta comprises species with photosynthetic capacity and functional chloroplasts as well as achlorophyllous and intermediate forms with restricted photosynthetic activity and degenerated chloroplasts. Previous data indicated significant differences with respect to the plastid genome coding capacity in different Cuscuta species that could correlate with their photosynthetic activity. In order to shed light on the molecular changes accompanying the parasitic lifestyle, we sequenced the plastid chromosomes of the two species Cuscuta reflexa and Cuscuta gronovii. Both species are capable of performing photosynthesis, albeit with varying efficiencies. Together with the plastid genome of Epifagus virginiana, an achlorophyllous parasitic plant whose plastid genome has been sequenced, these species represent a series of progression towards total dependency on the host plant, ranging from reduced levels of photosynthesis in C. reflexa to a restricted photosynthetic activity and degenerated chloroplasts in C. gronovii to an achlorophyllous state in E. virginiana.  相似文献   

5.
Pectin degrading enzymes, hemicellulose degrading enzyme andcellulose degrading enzymes were studied in Cuscuta reflexaRoxb., its susceptible hosts, Brassica campestris L., Cocciniaindica W. & A. Datura innoxia Mill, Helianthus annuus L.,Holoptelea indica Planch, Lantana camara L., Medicago sativaL., Manihot utilissima Pohl, Petunia hybrida X Hort exvilm,Pisum sativum L., Phaseolus vulgaris L. and Solanum nigrum L.and non-susceptible plants Ipomoea batata Lam. and Solanum tuberosumL. Pectin esterase and polygalacturonase were present in higheramounts in Cuscuta parasitic on P. vulgaris and S. nigrum, whichneeded more time for haustorial establishment. Exo-l, 4-ß-D-glucosidaseactivity was found in Cuscuta but could not be detected in itshosts. Xylanase and cellulase activity of host plants increasedwhile cellobiase activity decreased as a result of infectionby the parasite. Higher pectin esterase, polygalacturonase,xylanase and exo-l, 4-ß-D-glucosidase activities inthe haustorial region of the parasite is likely to bring aboutthe lysis of the cell wall of the host plant and thus facilitatethe penetration of the parasite haustoria into the host sieveelement, which is necessary for the transport of nutrients betweenthe host and the parasite. Key words: Cell wall degrading enzymes, Cuscuta reflexa  相似文献   

6.
Zusammenfassung InCuscuta reflexa-Extrakten konnte mit Hilfe verschiedener biologischer Teste ein cytokininartiger Faktor nachgewiesen werden. Die Bedeutung dieses Faktors für das Verhältnis zwischen derCuscuta und ihren Wirtspflanzen wird diskutiert.
On the existence of a cytokinin-like factor in cuscuta reflexa
Summary In extracts ofCuscuta reflexa Roxb. a cytokinin like factor (CAF = Cuscuta active factor) was found. It was shown that activity of this factor is similar to that of kinetin in all essential points. In tobacco-stem-tissue tests a promotion of growth by CAF was observed. In chlorophyll-preservation tests CAF produced a strong inhibition of chlorophyll dissimilation. Moreover in tests with14C-labelled glycine a migration of the glycine and other amino acids due to CAF was found.The occurrence of the observed cytokinin-like factor inCuscuta reflexa is discussed with respect to the parasite-host relations ofCuscuta.
  相似文献   

7.
The present work reveals new and completely different conclusionsabout the alkaloid economy of symbiotically fed Lupinus albusand L. albus parasitized by Cuscuta reflexa in the study periodof 43–55 d after sowing of lupin. Net flows of alkaloidswithin lupin and between host and parasite were calculated usingthe molar ratio of alkaloid nitrogen: total nitrogen combinedwith known net flows of nitrogen in the transport fluids andanalysing alkaloid accumulation in plant organs by HRGC. Incontrast to previous studies, quinolizidine alkaloids were predictedto be synthesized mainly in the root of L. albus and to be predominantlytransported via xylem to the apical plant shoot organs. Parasitismby C. reflexa for 12 d induced a decline of alkaloid contentin the host L. albus up to 53% compared to control plants andalkaloid synthesis was halved—apparently due to a shortageof the precursor lysine. In spite of an additional decreasein nitrogen levels at the second harvest, the host-parasitesystem showed a1.3-fold higher alkaloid content than the controlplants, 63% of the total alkaloids being attracted by Cuscuta.This indicates (a) restriction of catabolic processes withininfected lupins, (b) a massive shift of nitrogen metabolismin the direction of alkaloids and (c) an enormous sink potentialof Cuscuta for nitrogenous compounds. Although xylem was foundto be the main translocation system for alkaloids, the modellingof alkaloid flows predicts Cuscuta to derive only 4.5% of itstotal alkaloid supply from the xylem and 95.5% from the phloem.By analogy with nitrogen flows, this finding requires xylemphloemtransfers which were assumed to occur within the stem axis oflupin. A similar proportion regarding the contribution of xylemand phloem to the supply of Cuscuta was obtained for the netflows of two selected alkaloids, lupanine and 13  相似文献   

8.
When seedlings of Cuscuta japonica were grown with Vigna radiata(the host plant) in a flower pot for 6 d under white light andthen irradiated with far-red or blue light (ca. 6 µmolphotons m–2 s–1), the seedlings parasitized V. radiata.However, no parasitism of the seedlings was observed under redor white light or in darkness. The parasitic behavior of seedlingsof C. japonica was observed even if an acrylic rod was usedas a substitute for the host plant. Upon incubation under far-redlight, the seedling twined tightly around the rod and developedhaustoria towards it. Haustoria also developed when apical andsubapical regions of seedlings were held between two glass platesthat were about 0.7 mm apart and were irradiated with far-redlight. However, no haustoria were induced by either the holdor irradiation alone. These results indicate that parasitismof Cuscuta japonica is controlled by the cooperative effectsof two physical signals, far-red light and appropriate tactilepressure. Our findings suggest that parasitism by the genusCuscuta involves a novel strategy. (Received April 10, 1996; Accepted August 21, 1996)  相似文献   

9.
Nodulated Lupinus albus L. was grown on quartz sand in the greenhouseand supplied with a N-free culture solution. Half the plantswere infected with Cuscuta reflexa Roxb. at 33 DAS. An empiricallybased modelling technique was developed to quantitatively depictuptake, flow and utilization of C and N in the host plant andbetween host and parasite over a 12 d period. The modellingincorporated C: N ratios of solutes in phloem and pressure-inducedxylem sap, net increments of C and N and respiratory lossesof C. For assessing the transfer of solutes from host phloemto Cuscuta it was not possible to use the C: N ratio of phloemsap close to the site of parasite attachment, a procedure whichwould have assumed non-specific withdrawal of phloem-borne solutes,since this would have implied unimpeded mass flow from hostto parasite. The relative intake of C and N by the parasiteby specific withdrawal of nitrogenous and carbonaceous solutesfrom the phloem was obtained independently by assuming thatxylem intake occurred non-specifically. Xylem import was thusobtained (a) from transpiration and tissue water increment ofCuscuta and the concentrations of N and C in xylem sap and (b)from the Ca2+ increment of Cuscuta and the ratios Ca: N andCa: C in lupin xylem sap, assuming that Ca2+ intake occurredsolely via xylem. By subtracting net xylem import from totaluptake of C and N by Cuscuta the methods resulted in comparableratios of C: N intake from the phloem. The average ratio (53.4)was smaller than the C:N ratio in host phloem (85.6) indicatingspecific withdrawal of solutes with a distinct preference forN. Using this ratio, modelling of flows of C and N was possibleand showed that Cuscuta abstracted C and N mainly from the hostphloem, but xylem supply was nutrient-dependent and amountedto 6.4% of the N but only 0.5% of the C demand. The resultsindicated that Cuscuta exerted a very strong sink and competedefficiently with the root, the major sink of L. albus, by attracting81% of the current photosynthate and more N (223%) than wascurrently fixed. The massive demand of the parasite led to lossesparticularly of N from leaves and the root and apart from causingcarbon losses it appeared to induce a sink-dependent stimulationof photosynthesis. In contrast, nitrogen fixation in the Cuscuta-infectedlupin was inhibited to 37% of the control. Key words: Cuscuta reflexa, Lupinus albus, carbon, nitrogen, phloem, xylem, transport, parasites, modelling  相似文献   

10.
Cells capable of photosynthesis in the parasitic angiosperm Cuscuta reflexa Roxb. (dodder) are highly localized. Immunolocalization of ribulose-1,5 bisphosphate carboxylase-oxygenase (Rubisco) and autofluorescence of chlorophyll in transverse sections of stems showed that they were largely restricted to a band of cells adjacent to the vascular bundles, consequently, the concentrations of Rubisco and chlorophyll were low per unit area or fresh weight. When 14CO2 was supplied to stem segments of C. reflexa it preferentially accumulated in these cells adjacent to the vasculature. Although the conductance for CO2 movement to the cells containing chlorophyll and Rubisco was very low, both the light reactions and dark reactions of photosynthesis appeared to be functional. De-epoxidation of the xanthophyll-cycle pigments after exposure to high light, and the chlorophyll fluorescence parameters, photochemical quenching (qP), non-photochemical quenching (NPQ) and the quantum efficiency of photosystem II (φPSII) responded normally to changes in photon flux density, indicating functional light-driven electron transport. The response of CO2 exchange to photon flux density followed a typical hyperbolic curve, and positive rates of CO2 fixation occurred when external CO2 was increased to 5%. We propose that CO2 for carbon assimilation is derived from internally respired CO2 and that this layer of photosynthetic cells makes a positive contribution to the carbon budget of C. reflexa. Received: 23 October 1997 / Accepted: 16 December 1997  相似文献   

11.
When leaf discs of Xanthium strumarium L. a C3 plant, or Zeamays L. a C4 plant, are incubated in 1-aminocyclopropane-l-carboxylicacid (ACC) in closed flasks, ethylene is released. The rateof ethylene release appears to be dependent on the levels oflight and CO2 available for photosynthesis in the tissues. In Xanthium the rate of ethylene release is lower in the lightthan in the dark regardless of the presence or absence of addedbicarbonate as a source of CO2. The inhibition of ethylene releaseis most apparent in the absence of added bicarbonate (i.e. atthe CO2 compensation point), and at light intensities sufficientto saturate photosynthesis (had the CO2 level in the test flaskbeen maintained). In contrast, light dramatically promotes therate of ethylene release from Zea leaf tissue when the CO2 levelis maintained above the CO2 compensation point. The rate ofethylene release from either Xanthium or Zea, incubated withor without added bicarbonate, does not appear to be alteredby further increasing the light intensity above the minimallevels sufficient to saturate photosynthesis. In the closed system used in these studies and at a light intensitysufficient to saturate photosynthesis, Xanthium and Zea leaftissue both appear to release comparable amounts of ethylenefrom ACC when the data is expressed on a chlorophyll basis.However, in Xanthium the rate of ethylene release is similarin light and dark, while in Zea the rate in the light is muchgreater than in the dark when the data is expressed either ona leaf area or on a chlorophyll basis. It is suggested thatthe different responses of these tissues to light/dark transientsmay reflect differences in their ability to metabolize ACC and/ordifferences in their ability to retain and metabolize ethyleneitself.  相似文献   

12.
13.
The light and dark forms of phosphoenolpyruvate (PEP) carboxylase(PEPC) from the dicot plant Amaranthus viridis L. were purifiedand their kinetic properties were studied in water-based orbinary alcohol-water solvents. At pH 7.3, the specific activityof the purified light form was about 2.7-fold higher than thatpresented by the dark form of PEPC under optimal conditions,while Km remained virtually unchanged in both forms. The enzyme'slight form was better activated by glucose 6-phosphate and lessinhibited by L-malate than the dark PEPC. From the organic solventsstudied, methanol showed the most important effect, enhancingPEPC activity by two-fold at 20% (v/v). Ethanol, ethylene glycol,tert-butanol and 2-propanol were also activators to a lesserdegree, but at high concentrations (typically greater than 20%,v/v) the effect was reduced or turned to inhibition. Km (PEP)was reduced by an order of magnitude in the presence of 20%(v/v) methanol (i.e. from 0.32 to 0.022 mM for the light formof the enzyme). The inhibitory effect of malate at low PEP waslessened by methanol for both forms (i.e. I50 0.25 mM in aqueousmedium to 0.48 mM in binary mixture for the dark form), whileglucose-6-P activation of PEPC was not affected by methanol.The results suggest that the kinetics of PEPC in a medium thatmimics more closely in vivo conditions are different from thoseobserved by standard procedures consisting of aqueous media,and provide a new insight on the properties of PEPC as relatedto its regulation in vivo. (Received June 26, 1995; Accepted August 24, 1995)  相似文献   

14.
Ethylene Release from Leaves of Xanthium strumarium L. and Zea mays L.   总被引:1,自引:0,他引:1  
The release of ethylene into sealed Erlenmeyer flasks by intactleaves and leaf discs of Xanthium strumarium L. a C3 plant andZea mays L. a C4 plant were compared both in white light andin darkness. The effects of the presence or absence of addedCO2 (in the form of sodium bicarbonate) the photosynthetic inhibitor3-[3,4-dichlorophenyl]-l, l-dimethyl urea (DCMU) and 1-aminocyclopropane-1-carboxylicacid (ACC), the precursor of ethylene in higher plants, werealso investigated. The rate of ethylene release from leaf tissue of Xanthium inthe absence of added CO2 was markedly reduced in the light (i.e.at the CO2 compensation point). Treatments that would enhancethe CO2 availability to the tissue (i.e. added bicarbonate,darkness, treatment with DCMU) allowed higher levels of ethylenerelease. Incubation of the tissue with ACC considerably enhancedthe release of ethylene compared to that from the correspondingcontrol tissue without ACC. However, the pattern of ethylenerelease induced by the various treatments was similar with orwithout added ACC. When tissue, in the absence of added CO2, was transferred fromlight to darkness, and back to light for 90 min periods, theethylene release rates Increased during the interposed darkperiod but resumed the lower rate during the final light period.The addition of CO2 in the light resulted in a similar rateof ethylene release to that found in the dark. The overall pattern of ethylene release from Zea leaf tissuesubjected to light and dark in the presence or absence of addedCO2 was similar to that of Xanthium. However, two or three timesmore ethylene was released from maize leaves in the light whenCO2 was added compared to that generated in the dark. This isin marked contrast to Xanthium, where, under the light conditionsused, the ethylene release rate in the dark equalled or exceededthat occurring in the light, even in the presence of high levelsof CO2. A very low rate of ethylene release was observed atthe CO2 compensation point of maize. A speculative model is presented to explain how photosyntheticactivity might act as a key factor in regulating ethylene evolutionfrom leaf tissue in these experiments. It invokes the conceptof an inhibition by CO2 of ethylene retention or breakdown thuspermitting more ethylene to be released from the leaves.  相似文献   

15.
LYSHEDE  OLE B. 《Annals of botany》1992,69(4):365-371
The seeds of Cuscuta pedicellata have been investigated by transmissionand scanning electron microscopy. Additional observations havebeen made on seeds of C. campestris by SEM only. The seed coatconsists of an outer single epidermis, two different palisadelayers, and an inner multiparenchyma layer. The outer epidermalwall in C. pedicellata has a thick cuticle and zones rich inpectic substances. The thicker ‘U-shaped’ cell wallsin the outer palisade layer are strengthened by a wall layerof hemicellulose. The inner palisade layer has thick walledcells with a ‘light line’. The inner cell wall ofthe compressed multiparenchyma layer has a thin cuticle. A fairlythick cuticle is positioned directly on the endosperm surface.The aleurone cell walls are different from the remaining endospermwalls. The latter are thick and believed to be of galactomannans.There is a ‘clear’ zone between the plasmalemmaand the cell wall in the aleurone cells. The embryo cells arepacked with lipids and proteins. In Cuscuta campestris mostendosperm has been absorbed during the seed development. Theembryo apex has two minute leaf primordia. The features of theCuscuta seeds are discussed in relation to functional and environmentalconditions. Cuscuta pedicellata, Cuscuta campestris, seed, seed coat, cuticle, cell walls, endosperm, aleurone cells, galactomannan, embryo, TEM, SEM  相似文献   

16.
We have cloned and sequenced an area of about 9.0 kb of the plastid DNA (ptDNA) from the holoparasitic flowering plant Cuscuta reflexa to investigate the evolutionary response of plastid genes to a reduced selective pressure. The region contains genes for the 16S rRNA, a subunit of a plastid NAD(P)H dehydrogenase (ndhB), three transfer RNAs (trnA, trnI, trnV) as well as the gene coding for the ribosomal protein S7 (rps7). While the other genes are strongly conserved in C. reflexa, the ndhB gene is a pseudogene due to many frameshift mutations. In addition we used heterologous gene probes to identify the other ndh genes encoded by the plastid genome in higher plants. No hybridization signals could be obtained, suggesting that these genes are either lost or strongly altered in the ptDNA of C. reflexa. Together with evidence of deleted genes in the ptDNA of C. reflexa, the plastid genome can be grouped into four classes reflecting a different evolutionary rate in each case. The phylogenetic position of Cuscuta and the significance of ndh genes in the plastid genome of higher plants are discussed.  相似文献   

17.
Summary The mechanism of parasitism of Cuscuta, especially the absorption of nutrients from its host, is not clear. As it might be connected with the function of plant hormones, the endogenous levels of all hormone groups in the parasite, Cuscuta reflexa, and its host, Vicia faba, were investigated. Since the content of auxins, gibberellins and cytokinins is higher in the host than in the parasite, there is no indication that any of these phytohormones is involved in the absorption of nutrients by Cuscuta. However, the content of growth inhibitors, especially free abscisic acid, is much higher in Cuscuta than in the host. There is a gradient of abscisic acid with a maximum in the basal, haustoria-bearing stem region in which the transfer of nutrients from host to parasite occurs. The high content of abscisic acid within the parasite may be a causal connection with the parasitic absorption of nutrients from host sieve tubes.This publication is respectfully dedicated to the academician Prof. Dr. A. L. Kursanov, Moscow, on the occasion of the 80th anniversary of his birthday.  相似文献   

18.
Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca2+) release is the major second messenger during signal transduction, and we therefore studied Ca2+ spiking in tomato during infection with C. reflexa. Bioluminescence in aequorin‐expressing tomato was monitored for 48 h after the onset of Cuscuta infestation. Signals at the attachment sites were observed from 30 to 48 h. Treatment of aequorin‐expressing tomato leaf disks with Cuscuta plant extracts suggested that the substance that induced Ca2+ release from the host was closely linked to parasite haustoria.  相似文献   

19.
Lemna paucicostata HEGELM. is normally a short-day plant andflowers only in the presence of a chelating agent (EDTA or EDDHA)in the medium. The plant can be induced to flower even by asingle long night treatment; the flowering percentage, however,increases with further inductive cycles. The length of the criticaldark period depends upon the chelating agent employed in themedium. It is between 10 and 12 hr in the medium containingEDTA and about 8 hr in the EDDHA-supplemented medium. Red lightinterruption in the middle of the dark period—even fora minute—is inhibitory for flowering. Attempts to identify the metal ion(s) chelated reveal that thechelating agents affect flowering by facilitating iron uptake.This is also supported by the fact that the requirement of achelating agent for flowering can be overcome with an excessof iron in the medium. Interestingly, provision of EDDHA andexcess of ferric citrate, together, can bring about floweringeven under long days. 1Originally HEGELMAIER (1) designated L. paucicostata as a separatespecies; however, THOMPSON (2) and DAUBS (3) have treated itsynonymous to L. perpusilla. More recently, based on physiologicaland chemotaxonomic studies, the distinctiveness of L. paucicostatafrom L. perpusilla has been favoured (4, 5). (Received September 8, 1969; )  相似文献   

20.
Abstract: The twining parasitic plant Cuscuta reflexa is able to attack the tropical liana Ancistrocladus heyneanus by invading the stem tissues and forming haustoria that penetrate the vascular bundles of the host. Subsequent reactions by the host, including phytoalexin production and hypersensitive reactions, lead to a degeneration of the parasite's haustonria and eventually to the abortion of parasitic tissues. In experiments with callus cultures of both plants, acetogenic secondary metabolites produced by the host, in the first line the naphthoquinone plumbagin, are demonstrated to be major antipathogenic factors involved in this incompatible relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号