首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.  相似文献   

2.
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.  相似文献   

3.
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the absence or presence of the heavy chain by immunofluorescence microscopy of transiently transfected cells. Distinct from all other MAPs, the MAP1B light chain–induced formation of stable but apparently flexible microtubules resistant to the effects of nocodazole and taxol. Light chain activity was inhibited by the heavy chain. In addition, the light chain was found to harbor an actin filament binding domain in its COOH terminus. By coimmunoprecipitation experiments using epitope-tagged fragments of MAP1B we showed that light chains can dimerize or oligomerize. Furthermore, we localized the domains for heavy chain–light chain interaction to regions containing sequences homologous to MAP1A. Our findings assign several crucial activities to the MAP1B light chain and suggest a new model for the mechanism of action of MAP1B in which the heavy chain might act as the regulatory subunit of the MAP1B complex to control light chain activity.  相似文献   

4.
Microtubule-associated protein 1B (MAP1B), an abundant developmentally regulated neuronal protein, is a stoichiometric complex of a heavy chain and two light chains (light chain 1 and light chain 3). We find that light chain 1 is encoded within the 3' end of a previously reported MAP1B heavy chain cDNA. Amino acid sequencing, epitope mapping, Northern blotting, and Southern blotting indicate that the light chain and heavy chain are encoded by the same mRNA within the same open reading frame. In addition, amino acid sequencing of a 120 kd microtubule-binding and light chain-binding fragment of the heavy chain reveals that light chain 1 binds near the heavy chain N-terminus. Together these data indicate that the heavy chain and light chain 1 are produced by proteolytic processing of a MAP1B polyprotein and form a complex microtubule-binding domain.  相似文献   

5.
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.  相似文献   

6.
MAP1-family proteins are classical microtubule-associated proteins (MAPs) that bind along the microtubule lattice. The founding members, MAP1A and MAP1B, are predominantly expressed in neurons, where they are thought to be important in the formation and development of axons and dendrites. Mammalian genomes usually contain three family members, MAP1A, MAP1B and a shorter, more recently identified gene called MAP1S. By contrast, only one family member, Futsch, is found in Drosophila. After their initial expression, the MAP1A and MAP1B polypeptides are cleaved into light and heavy chains, which are then assembled into mature complexes together with the separately encoded light chain 3 subunit (LC3). Both MAP1A and MAP1B are well known for their microtubule-stabilizing activity, but MAP1 proteins can also interact with other cellular components, including filamentous actin and signaling proteins. Furthermore, the activity of MAP1A and MAP1B is controlled by upstream signaling mechanisms, including the MAP kinase and glycogen synthase kinase-3 β pathways.  相似文献   

7.
Myosin subunit composition in human developing muscle.   总被引:5,自引:2,他引:3       下载免费PDF全文
Previous pyrophosphate-gel studies have reported the existence of embryonic neonatal myosin isoenzymes in human developing muscle. The present investigation was undertaken to characterize their subunit composition more precisely. Two immature muscle myosins are contrasted with adult myosin: neonatal myosin and foetal myosin. The neonatal form of myosin is weakly cross-reactive with rabbit slow myosin and contains only fast-type light chains (LC), LC1F and LC2F. The associated heavy chains consist of a single electrophoretic component that reacts exclusively with antibodies against human foetal myosin and has a mobility and peptide pattern distinct from that of adult fast and slow heavy chains. Foetal myosin is distinguished by the presence of low amounts of a heavy chain immunologically cross-reactive with the adult slow form and of two additional light-chain components: a LC2S light chain and a foetal-specific light chain (LCemb.). The foetal-specific light chain, as shown by one-dimensional-peptide-map analysis, is structurally unrelated to both LC1S and LC1F light chains of human adult myosin. We conclude from these results that the ontogenesis of human muscle myosin shares certain common features with that observed in other species, except for the persistence until birth of a foetal form of heavy chain (HCemb.).  相似文献   

8.
The rearranging immunoglobulins (Igs) are a family of recognition and defense proteins found in all vertebrate classes. These proteins consist of two types of polypeptide chains; each of these contains a variable (V) domain, a joining (J) segment, and a constant (C) region, which can itself consist of one to four domains. The distinction between light and heavy chains is an ancient one phylogenetically that is reflected in the structures of V, J, and C regions. Despite the early emergence of these genetic elements, conservatism is apparent in the peptide structures encoded by V, J, and C exons. C regions of heavy chains did not evolve as single units; rather the individual domains show their own clustering patterns, which apparently are independent of heavy-chain designation or species. C-region domains of light chains and the T cell receptor beta chain are similar to one another and to the most carboxyl-terminal domain of heavy chains. Comparison of the light chains of sharks, bullfrogs, chickens, and mammals indicated that a phylogenetic distinction can be made between kappa and lambda light chains. V and J segments of the rearranging T cell receptors alpha, gamma, and delta are homologous to the corresponding segments of Igs, but their C regions form a group that is markedly distinct from those of conventional Igs and Tcr beta.  相似文献   

9.
The locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII were determined by sequence analysis of fragments produced by chemical and enzymatic digestions. The A1 and A2 domains of the heavy chain and the A3 domain of the light chain contain one free cysteine and two disulfide bonds, whereas the C1 and C2 domains of the light chain have one disulfide bond and no free cysteine. The positions of these disulfide bonds are conserved in factor V and ceruloplasmin except that the second disulfide bond in the A3 domain is missing in both factor V and ceruloplasmin. The positions of the three free cysteines of factor VIII are the same as three of the four cysteines present in ceruloplasmin. However, the positions of the free cysteines in factor VIII and ceruloplasmin are not conserved in factor V.  相似文献   

10.
The deduced amino acid sequence for the filamentous microtubule-associated protein (MAP) 1A, thought to be involved in stabilizing the mature neuronal cytoskeleton, has been determined from a series of overlapping cDNA clones. Though previously described as biochemically and immunologically distinct from MAP1B, we now demonstrate that MAP1A is structurally related to MAP1B, a protein associated with neurite outgrowth and process plasticity. The two MAPs exhibit regional amino acid sequence similarities spanning their potential microtubule binding domains placing both into a new MAP family. The cDNA sequence encoding MAP1A was also found to encode one of its associated light chains (LC) called LC2. Both proteins are found on a single mRNA in the same open reading frame and are translated as a pre-MAP1A/LC2-protein. The topological relationship between MAP1A and LC2 coding sequences is, therefore, identical to that previously shown for MAP1B and LC1 (Hammarback, J. A., Obar, R. A., Hughes, S. M., and Vallee, R. B. (1991) Neuron 7, 129-139). Based on these and earlier results, we conclude that LC1 and LC2 are structurally related polypeptides generated from distinct MAP polyprotein precursors but free to exchange between the two MAPs.  相似文献   

11.
Molecular Insights into Mammalian End-binding Protein Heterodimerization   总被引:1,自引:0,他引:1  
Microtubule plus-end tracking proteins (+TIPs) are involved in many microtubule-based processes. End binding (EB) proteins constitute a highly conserved family of +TIPs. They play a pivotal role in regulating microtubule dynamics and in the recruitment of diverse +TIPs to growing microtubule plus ends. Here we used a combination of methods to investigate the dimerization properties of the three human EB proteins EB1, EB2, and EB3. Based on Förster resonance energy transfer, we demonstrate that the C-terminal dimerization domains of EBs (EBc) can readily exchange their chains in solution. We further document that EB1c and EB3c preferentially form heterodimers, whereas EB2c does not participate significantly in the formation of heterotypic complexes. Measurements of the reaction thermodynamics and kinetics, homology modeling, and mutagenesis provide details of the molecular determinants of homo- versus heterodimer formation of EBc domains. Fluorescence spectroscopy and nuclear magnetic resonance studies in the presence of the cytoskeleton-associated protein-glycine-rich domains of either CLIP-170 or p150glued or of a fragment derived from the adenomatous polyposis coli tumor suppressor protein show that chain exchange of EBc domains can be controlled by binding partners. Extension of these studies of the EBc domains to full-length EBs demonstrate that heterodimer formation between EB1 and EB3, but not between EB2 and the other two EBs, occurs both in vitro and in cells as revealed by live cell imaging. Together, our data provide molecular insights for rationalizing the dominant negative control by C-terminal EB domains and form a basis for understanding the functional role of heterotypic chain exchange by EBs in cells.  相似文献   

12.
The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP-heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.  相似文献   

13.
L W Bergman  W M Kuehl 《Biochemistry》1978,17(24):5174-5180
The initial glycosylation of MPC 11 gamma 2b heavy chains occurs quantitatively in vivo when the nascent heavy chains reach a size of approximately 38 000 daltons. Nonglycosylated, completed MPC 11 heavy chains cannot be glycosylated in these cells. Other classes of mouse heavy chains (i.e., mu, alpha, and gamma 1) also appear to be glycosylated as nascent chains; nonglycosylated, completed heavy chains cannot be glycosylated by the cell in any of these cases. In contrast, variant MPC 11 cells synthesizing a heavy chain with a carboxy-terminal deletion appear to glycosylate some heavy chains prior to chain completion and some heavy chains after chain completion and release from the polysomes. Similar to the variant MPC 11 cells, MOPC 46B cells (which synthesize a kappa light chain containing an oligosaccharide attached to an asparagine located 28 residues from the amino terminus) glycosylate the majority of light chains after prior to chain completion but also some light chains after chain completion and release from the polysomes. In addition, it appears that, although completed MOPC 46B light chains can be glycosylated if they are present in a monomeric form, they cannot be glycosylated if they are present in a covalent dimeric form.  相似文献   

14.
The first cluster of differentiation (CD1) defines at least three distinct human thymic cell-surface differentiation antigens-CD1a, CD1b, and CD1c. We looked for structural homology of the three CD1 heavy chains at their peptide level by two-dimensional peptide maps. We show here that the CD1a M r 49 000 heavy chain and the CD1b M r 45 000 heavy chain appear to be more homologous to each other than to the CD1c M r 43 000 heavy chain and that only one tyrosil peptide is common to the three heavy chains. Study of the CD1 heavy chains from several individuals reveals a very limited polymorphism of these molecules. We also demonstrate here that CD1a or CD1a-like molecules and other CD1 molecules can form intermolecular complexes on the surface of normal thymus cells. Molecules that are structurally very similar to CD1a molecules are associated noncovalently either with CD1c molecules or with CD1b molecules, and only CD 1a molecules can associate covalently with CD8 molecules. In contrast, we could not find these intermolecular complexes on the surface of leukemic T-cell lines in culture.Abbreviations used in this paper CD cluster of differentiation - mAb monoclonal antibody - MHC major histocompatibility complex - NP-40 Nonidet P 40 - B2m beta-2 microglobulin - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TL thymus leukemia  相似文献   

15.
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor composed of two heavy chains (approximately 530 kDa), three intermediate chains (approximately 74 kDa), and a family of approximately 52-61 kDa light chains. Although the approximately 530 kDa subunit contains the motor and microtubule binding domains of the complex, the functions of the smaller subunits are not known. Using two-dimensional gel electrophoresis and proteolytic mapping, we show here that the light chains are composed of two major families, a higher M(r) family (58, 59, 61 kDa; dynein light chain group A [DLC-A]) and lower M(r) family (52, 53, 55, 56 kDa; dynein light chain group B [DLC-B]). Dissociation of the cytoplasmic dynein complex with potassium iodide reveals that all light chain polypeptides are tightly associated with the approximately 530 kDa heavy chain, whereas the approximately 74 kDa intermediate chain polypeptides are more readily extracted. Treatment with alkaline phosphatase alters the mobility of four of the light chain polypeptides, indicating that these subunits are phosphorylated. Sequencing of a cDNA clone encoding one member of the DLC-A family reveals a predicted globular structure that is not homologous to any known protein but does contain numerous potential phosphorylation sites and a consensus nucleotide-binding motif.  相似文献   

16.
We examined the association of a 34-kD light chain component to the heavy chains of MAP-1 using a monoclonal antibody that specifically binds the 34-kD component and labels neuronal microtubules in a specific and saturable manner. Immunoprecipitation of MAP-1 heavy chains together with the 34-kD component by the antibody indicates that the 34-kD polypeptide forms a complex with MAP-1 heavy chains. Both major isoforms of MAP-1 heavy chains (MAP-1A and MAP-1B) were found in the immunoprecipitate. Digestion of MAP-1 with alpha-chymotrypsin and analysis of the chymotryptic peptides reveals a 120-kD fragment of the MAP-1 heavy chain that binds to microtubules and is precipitable with the 34-kD light chain antibody, suggesting that the 34-kD light chain also binds to this domain of the molecule. Since microtubules that contain the 120-kD fragment lack the long lateral projections characteristic of microtubules with intact MAP-1, the 34-kD light chains may be localized at or near the microtubule surface.  相似文献   

17.
Calpactin I, a Ca2+- and phospholipid-binding cytoskeletal protein, which serves as a major substrate of protein-tyrosine kinases, was isolated from bovine intestine and lung as a species containing two 36-kDa heavy chains and two 10-kDa light chains. The heavy chain is comprised of two distinct domains which can be identified by limited proteolysis: a COOH-terminal 33-kDa core, which contains the Ca2+- and phospholipid-binding sites, and an NH2-terminal tail, which contains the major site of phosphorylation by pp60v-src. To determine the site of association of the light chain on the heavy chain, we analyzed the association states of the light chain, core, and tail by sucrose gradient centrifugation after limited chymotryptic digestion. The core was not detected in higher Mr complexes with the light chain, and the tail cosedimented with a light chain dimer. The tail, isolated from chymotryptic digests and radiolabeled with 125I, was found to form a specific complex with the light chain, but not the core. The authentic tail and a synthetic peptide corresponding to residues 1-29 of the calpactin I heavy chain were both able to specifically inhibit the reassociation between heavy and light chain, whereas a synthetic peptide corresponding to residues 15-33 was inactive. These results suggest that the tail may serve as a site of regulation by light chain or phosphorylation.  相似文献   

18.
He H  Dang Y  Dai F  Guo Z  Wu J  She X  Pei Y  Chen Y  Ling W  Wu C  Zhao S  Liu JO  Yu L 《The Journal of biological chemistry》2003,278(31):29278-29287
The molecular machinery required for autophagy is highly conserved in all eukaryotes as seen by the high degree of conservation of proteins involved in the formation of the autophagosome membranes. Recently, both yeast Apg8p and its rat homologue Map1lc3 were identified as essential constituents of autophagosome membrane as a processed form. In addition, both the yeast and human proteins exist in two modified forms produced by a series of post-translational modifications including a critical C-terminal cleavage after a conserved Gly residue, and the smaller processed form is associated with the autophagosome membranes. Herein, we report the identification and characterization of three human orthologs of the rat Map1LC3, named MAP1LC3A, MAP1LC3B, and MAP1LC3C. We show that the three isoforms of human MAP1LC3 exhibit distinct expression patterns in different human tissues. Importantly, we found that the three isoforms of MAP1LC3 differ in their post-translation modifications. Although MAP1LC3A and MAP1LC3C are produced by the proteolytic cleavage after the conserved C-terminal Gly residue, like their rat counterpart, MAP1LC3B does not undergo C-terminal cleavage and exists in a single modified form. The essential site for the distinct post-translation modification of MAP1LC3B is Lys-122 rather than the conserved Gly-120. Subcellular localization by cell fractionation and immunofluorescence revealed that three human isoforms are associated with membranes involved in the autophagic pathway. These results revealed different regulation of the three human isoforms of MAP1LC3 and implicate that the three isoforms may have different physiological functions.  相似文献   

19.
The MAP1 (microtubule-associated protein 1) family is a class of microtubule-binding proteins represented by mammalian MAP1A, MAP1B and the recently identified MAP1S. MAP1A and MAP1B are expressed in the nervous system and thought to mediate interactions of the microtubule-based cytoskeleton in neural development and function. The characteristic structural organization of mammalian MAP1s, which are composed of heavy- and light-chain subunits, requires proteolytic cleavage of a precursor polypeptide encoded by the corresponding map1 gene. MAP1 function in Drosophila appears to be fulfilled by a single gene, futsch. Although the futsch gene product is known to share several important functional properties with mammalian MAP1s, whether it adopts the same basic structural organization has not been addressed. Here, we report the identification of a Drosophila MAP1 light chain, LC(f), produced by proteolytic cleavage of a futsch-encoded precursor polypeptide, and confirm co-localization and co-assembly of the heavy chain and LC(f) cleavage products. Furthermore, the in vivo properties of MAP1 proteins were further defined through precise MS identification of a conserved proteolytic cleavage site within the futsch-encoded MAP1 precursor and demonstration of light-chain diversity represented by multiple LC(f) variants. Taken together, these findings establish conservation of proteolytic processing and structural organization among mammalian and Drosophila MAP1 proteins and are expected to enhance genetic analysis of conserved MAP1 functions within the neuronal cytoskeleton.  相似文献   

20.
The present paper describes a comparative analysis of light chains associated with primary and secondary IgM, as well as with secondary IgG antibodies to fluorescein, undertaken in order to explore the relationship between light chain somatic hypermutation and the isotype switch. The data reveal a disparity in the frequency of somatic hypermutation of secondary IgM heavy versus light chains. Among 20 secondary IgM light chains, a mutation frequency of 1/777 nucleotides was defined. In contrast, our previous analysis of the heavy chains of these molecules had identified a mutation frequency of 1/129. Among 17 IgG-derived light chains, obtained from animals killed at the same time point as those from which the secondary IgM antibodies were obtained, we measured a mutation frequency of 1/77. Finally, analysis of 20 light chains derived from primary IgM antibodies revealed a mutation frequency of only 1/1192 nucleotides. These data demonstrate that, prior to the class switch, light chain mutation occurs at a frequency considerably lower than that measured for the associated heavy chain gene. Six additional apparent mutations in the secondary IgM antibody 95B3 were all shared with a set of IgG antifluorescein antibodies belonging to the Vkappa 34 family. It is suggested that these light chains represent the products of a previously uncharacterized germ line gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号