首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The refolding and reoxidation of fully reduced and denatured chymotrypsinogen A have been studied in the presence of low concentrations of guanidine HCl or urea. Renaturation yields of 60 to 70% were observed when the reoxidation was facilitated by mixtures of reduced and oxidized glutathione. Refolding occurred within a narrow range of denaturant concentration (1.0 to 1.3 M guanidine HCl and 2 M urea) in which the native protein was shown to be stable, and the reduced protein was shown to regain the correct disulfide pairing. Renatured chymotrypsinogen is indistinguishable from the native zymogen in chromatographic behavior, potential chymotryptic activity, sedimentation coefficient, and spectral properties. The kinetics of renaturation were determined. Some of the protein species obtained at various times of renaturation were characterized as incorrectly oxidized molecules which could be renatured by thiol-catalyzed interchange of disulfide bonds.  相似文献   

2.
A folding study of creatine kinase from Pelodiscus sinensis has not yet been reported. To gain more insight into structural and folding mechanisms of P. sinensis CK (PSCK), denaturants such as SDS, guanidine HCl, and urea were applied in this study. We purified PSCK from the muscle of P. sinensis and conducted inhibition kinetics with structural unfolding studies under various conditions. The results revealed that PSCK was completely inactivated at 1.8 mM SDS, 1.05 M guanidine HCl, and 7.5 M urea. The kinetics via time-interval measurements showed that the inactivation by SDS, guanidine HCl, and urea were all first-order reactions with kinetic processes shifting from monophase to biphase at increasing concentrations. With respect to tertiary structural changes, PSCK was unfolded in different ways; SDS increased the hydrophobicity but retained the most tertiary structural conformation, while guanidine HCl and urea induced conspicuous changes in tertiary structures and initiated kinetic unfolding mechanisms. Our study provides information regarding PSCK and enhances our knowledge of the reptile-derived enzyme folding.  相似文献   

3.
Concentrated solutions of urea and of guanidine · HCl produced a random spectrum of single-disulphide forms of the polypeptide chain of the pancreatic trypsin inhibitor. Guanidine · HCl also unfolded completely, with accompanying interchange of disulphide bonds, the two-disulphide form of this protein in the native-like conformation; urea produced an equilibrium mixture in which one-quarter of the molecules had the native-like conformation and disulphide bonds. The unfolded forms of the protein in the denaturants were very flexible polypeptide chains. The observations suggest that urea and guanidine · HCl are denaturants because they produce essentially equally favourable solvation of all portions of a polypeptide.The energetics of the conformational transitions involved in folding and unfolding of the inhibitor were determined in urea and compared with those observed in its absence. The denaturant lowers the stability of the native, folded inhibitor relative to that of the reduced, unfolded state by 6.5 kilocalories per mole; the greatest part of this apparent free-energy difference was expressed at the two-disulphide stage of folding. The results are consistent with other indications that most of the favourable interactions stabilizing the native conformation of this protein are not encountered until the final stage of folding, when all may occur simultaneously.The unfolded one- and two-disulphide species produced in guanidine · HCl were trapped, and their rearrangement to the normal intermediates followed after removal of the denaturant. The random single-disulphide species, with one exception, reverted very rapidly to the non-random spectrum of intermediates normally observed during folding; this confirms that these species are normally rapidly interconverted and that normal refolding of the reduced protein is not dependent kinetically upon residual stable conformation in the reduced protein. The unfolded two-disulphide species refolded to the native-like conformation more slowly, but appeared to pass through the same intermediates normally observed during refolding from the fully reduced state.  相似文献   

4.
A single, low molecular weight protein is found after urea or guanidine hydrochloride (Gdn.HCl) treatment of empty capsids derived from bacteriophage f2. The final product of denaturation is apparently a monomer, existing as a random coil in larger than or equal to 4.0 M Gdn.HCl but in a less extended form in 8.0 M urea. In contrast, an 11 S protein component is isolated after treatment of the intact virus with 4.0 M Gdn.HCl (Zelazo & Haschemeyer, 1969), indicating that RNA plays a role in stabilizing larger subunits. Denaturation by Gdn.HCl occurs in two stages as measured by changes in CD and Stokes radius: dissociation that involves a structural perturbation of aromatic side chains, followed by a major, cooperative transition that evidently results in the loss of all noncovalent structure. Denaturation by urea appears to be a much less cooperative process that occurs in several steps over a wide range of urea concentration (1--7 M). In both urea and Gdn.HCl, dissociation into subunits begins at a lower concentration of denaturant than the major changes in conformation.  相似文献   

5.
Ribosomal proteins from two eucaryotic species, prepared by either the guanidine . HCl or LiCl . urea method and subsequently dissolved in 8 M urea were found to be largely retained in solution after removal of the urea by dialysis against a solution of low ionic strength (0.05 M Tris . HCl, pH 7.6, 0.025 M KCl, 0.005 M magnesium acetate) and centrifugation at 100,000 times g. The protein composition of this preparation was virtually identical to that of the original urea-containing solution as determined by two-dimensional polyacrylamide gel electrophoresis. Thus, there exists a very simple method for obtaining the bulk of the ribosomal proteins in solution under conditions where ribosomes themselves are stable.  相似文献   

6.
Cells of Vibrio cholerae underwent rapid autolysis when suspended in media of low osmolarity under non-growing conditions. Chaotropes like urea and guanidine. HCl which are potent protein denaturants caused complete and immediate lysis of whole cells. This unique sensitivity of V. cholerae to protein denaturants led to the development of a rapid method for the selective isolation of the outer membrane upon treatment of whole cells with urea. The composition of the outer membrane isolated from both whole cells and crude envelopes by treatment with urea was comparable with that of the outer membrane isolated by other conventional methods.  相似文献   

7.
Abstract: Retinas were labeled in culture with [3H]glucosamine or [3H]leucine and [35S]sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sul-fated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.  相似文献   

8.
A 9000-Mr protein isolated from a 60% ethanolic extract of soybean (Glycine max) seeds has been characterized and fully sequenced. The protein consists of 80 amino acid residues with four disulfide bonds. It contains a large number of hydrophobic residues and lacks methionine, phenylalanine, tryptophan, lysine and histidine residues. The protein readily crystallizes from water but is quite soluble in aqueous organic solvents like 95% 1-propanol. It aggregates to form large molecules (above 80 kDa) under ordinary denaturing conditions, such as 6 M guanidine X HCl and 8 M urea. Sequence analysis showed that the amino-terminal four-fifths is extremely hydrophobic and most of the acidic residues exist as their amide forms, and only the carboxyl-terminal short segment is rather hydrophilic. A computer search for homology detected an unexpected similarity of this protein to rat prolactin; however, its significance could not be assessed and this protein appears to represent a hitherto unknown protein family. Although no biochemical activity could be detected, the existence in relatively high abundance (approx. 200 mg from 1 kg seeds) of this novel protein may suggest its physiological significance in the plant.  相似文献   

9.
Recombinant human tissue-type plasminogen activator derivative (r-PA), fused with thioredoxin (Trx), was expressed in Escherichia coli. The resultant fusion protein, Trx-r-PA, was almost completely in the form of inclusion bodies and without activity. Different refolding strategies were investigated including different post-treatment of solubilized Trx-r-PA inclusion bodies, on-column refolding by size-exclusion chromatography (SEC) using three gel types (Sephacryl S-200, S-300 and S-400), refolding by Sephacryl S-200 with a urea gradient and two-stage temperature control in refolding. An optimized on-column refolding process for Trx-r-PA inclusion bodies was established. The collected Trx-r-PA inclusion bodies were dissolved in 6 m guanidine hydrochloride (Gdm·HCl), and the denatured protein was separated from dithiothreitol (DTT) and Gdm·HCl with a G25 column and simultaneously dissolved in 8 m urea containing oxidized glutathione (GSSG). Finally a refolding of Trx-r-PA protein on Sephacryl S-200 column with a decreasing urea gradient combined with two-stage temperature control was employed, and the activity recovery of refolded protein was increased from 3.6 to 13.8% in comparison with the usual dilution refolding. Revisions requested 31 October 2005; Revisions received 20 December 2005  相似文献   

10.
In this report, we describe the result of an extensive investigation of the effects of the conformations of proteins on the solvency of the bulk-phase water in which the proteins are dissolved. The concentrations of the proteins used were usually between 20 to 40%; the temperature was 25 degrees +/- 1 degree C. To probe the solvency of the water, the apparent equilibrium distribution coefficients (or p-values) of 4 solutes were studied: Na+ (sulfate), glycine, sucrose, and urea. From 8 to 14 isolated proteins in three types of conformations were investigated: native; denatured by agents that unravel the secondary structure (e.g., alpha-helix, beta-pleated sheet) of the protein (i.e., 9 M urea, 3 M guanidine HCl); denatured by agents that only disrupt the tertiary structure but leave the secondary structure intact or even strengthened (i.e., 0.1 M sodium dodecylsulfate or SDS, 2 M n-propanol). The results are as follows: (1) as a rule, native proteins have no or weak effect on the solvency of the water for all 4 probes; (2) exposure to 0.1 M SDS and to 2 M n-propanol, as a rule, does not significantly decrease the p-value of all 4 probes; (3) exposure to 9 M urea and to 3 M guanidine HCl consistently lowers the p-values of sucrose, glycine and Na+ (sulfate) and equally consistently produces no effect on the p-value of urea. Sucrose, glycine, and Na+ are found in low concentrations in cell water while urea is not. These experiments were designed and carried out primarily to test two subsidiary theories of the AI hypotheses: the polarized multilayer (PM) theory of cell water; and the theory of size-dependent solute exclusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.  相似文献   

12.
The ability of buffer solutions containing low concentrations of nonionic detergents (Triton X-100, Tween 20, Brij 58, and Lubrol PX) and the anionic detergent sodium deoxycholate, as well as mixtures of these detergents with chaeotropes (urea and guanidine hydrochloride), to extract intracellular proteins of Gram-negative microorganisms (Escherichia coli and Pseudomonas aeruginosa) was studied. It was established that the solutions containing Triton X-100 and sodium deoxycholate and the mixtures of these detergents with urea are the most effective. It was shown that the extraction of proteins from bacterial cells under the studied conditions is not accompanied by a release of DNA into solution but is associated with extraction of low-molecular RNAs. The level of protein extraction reaches 80%. No disruption of the bacterial cell wall occurs during the extraction, and proteins probably permeate through meshes of the murein network. The efficiencies of our buffer mixtures are close to or higher than that of the commercial reagent CelLytic B (Sigma, United States). The practical uses of the chaeotropic mixtures developed are discussed.  相似文献   

13.
The stability of Rhodobacter capsulatus bacterioferritin, a 24-meric homopolymer, toward denaturation on variation in pH and temperature, and increasing concentrations of urea and guanidine.HCl was investigated with native PAGE, and CD and fluorescence spectroscopies. With temperature and urea, the wild-type protein denatured without discernible intermediates in the equilibrium experiments, but with guanidine.HCl (Gnd.HCl) one or more intermediate species were apparent at relatively low Gnd.HCl concentrations. Dissociated subunit monomers, or aggregates smaller than 24-mers containing the high alpha-helical content characteristic of the native protein were not obtained at any pH without a high proportion of the 24-mer being present, and taken together with the other denaturation experiments and the construction of stable subunit dimers by site-directed mutagenesis, this observation indicates that folding of the bacterioferritin monomer could be coupled to its association into a dimer. Glu 128 and Glu 135 were replaced by alanine and arginine in a series of mutants to determine their role in stabilizing the 24-meric oligomer. The Glu128Ala, Glu135Ala and Glu135Arg variants retained a 24-meric structure, but the Glu128Ala/Glu135Ala and Glu128Arg/Glu135Arg variants were stable subunit dimers. CD spectra of the Glu135Arg, Glu128Ala/Glu135Ala, and Glu128Arg/Glu135Arg variants showed that they retained the high alpha-helical content of the wild-type protein. The 24-meric Glu135Arg variant was less stable than the wild-type protein (T(m), [Urea](50%) and [Gnd.HCl](50%) of 59 degrees C, 4.9 M and 3.2 M compared with 73 degrees C, approximately 8 M and 4.3 M, respectively), and the dimeric Glu128Arg/Glu135Arg variant was less stable still (T(m), [Urea](50%) and [Gnd.HCl](50%) of 43 degrees C, approximately 3.2 M and 1.8 M, respectively). The differences in stability are roughly additive, indicating that the salt-bridges formed by Glu 128 and Glu 135 in the native oligomer, with Arg 61 and the amino-terminal amine of neighboring subunits, respectively, contribute equally to the stability of the subunit assembly. The additivity and assembly states of the variant proteins suggest that the interactions involving Glu 128 and Glu 135 contribute significantly to stabilizing the 24-mer relative to the subunit dimer.  相似文献   

14.
The effect of temperature, urea, guanidine HCl, ionic and nonionic detergents, organic solvents, chaotropic salts, pH, and divalent cations has been investigated on purified human histocompatibility antigens solubilized by papain (HLApap) or solubilized by sodium cholate (HLAchol). HLApap and HLAchol are fairly stable proteins to agents acting predominantly on hydrogen bonds (temperature, urea) or hydrophobic forces (ionic and nonionic detergents). However, agents which affect ionic interactions (pH, salts, divalent cations) dissociate the molecules into subunits. A single binding site for beta 2-microglobulin with an affinity constant of 1.0 X 10(7) M-1 was found for the alpha chain of HLAchol. The dissociated subunits can be separated by affinity chromatography on Sepharose-rabbit IgG anti-human beta 2-microglobulin and reassociate in vitro when incubated under the appropriate conditions. The results point toward an important role of ionic interactions between subunits in the stabilization of the quaternary structure of HLA.  相似文献   

15.
The interaction of α-globulin with urea/guanidine hydrochloride was investigated by determining the apparent partial specific volumes of the protein in these solvents. The apparent partial specific volumes were determined both under isomolal and isopotential conditions. The preferential interaction parameter with solvent components calculated were 0.08 and 0.1 g of urea and guanidine hydrochloride respectively per g protein. In both the cases the interaction was not preferential with water. The total binding of denaturant to α-globulin was calculated both for urea and guanidine hydrochloride and the correlation between experimentally determined number of mol of denaturant bound per mol of protein and the total number of peptide bonds and aromatic amino acids were found to be in excellent agreement with each other. The changes in volume upon transferring α-globulin from a salt solution to 8 M urea and 6 M guanidine hydrochloride were also calculated. This work was done at the Biochemistry Department, Brandeis University, Waltham, Massachusetts 02254, USA.  相似文献   

16.
Fatty acid synthetase from Mycobacterium smegmatis has been purified to near homogeneity as judged by a variety of electrophoretic criteria under both native and dissociating conditions. A single protein band was obtained on gel electrophoresis in sodium dodecyl sulfate or 8 M urea at various pH values and on isoelectric focusing in 8 M urea. A subunit molecular weight of about 290,000 was found by polyacrylamide gel electrophoresis in sodium dodecyl sulfate or by sedimentation equilibrium ultracentrifugation in 6 M guanidine HCl. Quantitative Quantitative determination of pantetheine, of flavin, and of the number of fatty acids synthesized during a single enzyme turnover all yield values corresponding to a stoichiometry of about 1 mol per mol of subunit, providing strong evidence that M. smegmatis fatty acid synthetase is an oligomer of identical, multifunctional polypeptide chains.  相似文献   

17.
Erythropoietin is a glycoprotein hormone that stimulates the maturation of late erythroid progenitor cells. It has three N-linked and one O-linked carbohydrates which play an important role in the biosynthesis and biological activities of the protein. To determine the role the carbohydrate might have in maintaining the conformational stability of the protein, the protein expressed in mammalian cells (fully glycosylated), the asialo mammalian-expressed protein, and the protein expressed in Escherichia coli (no carbohydrate) were compared for their stability to guanidine HCl, pH, and temperature. Circular dichroism was used to follow protein unfolding. Both the intact and asialo mammalian-expressed proteins unfolded with a cooperative transition in guanidine HCl, with a midpoint at 1.75 M guanidine HCl. The E. coli-expressed material unfolded with a midpoint of 1.2 M guanidine HCl, and a delta G of unfolding which was 1.4 kcal/mol less than that of the two glycosylated molecules. The E. coli-derived protein was also significantly less stable to pH-induced conformational changes, showing a cooperative transition in 35% glycerol with a midpoint at pH 4.4, while both the intact and asialo mammalian-expressed molecules had a transition midpoint of pH 3.75 in the absence of glycerol, and approximately pH 3 in the presence of 35% glycerol. The E. coli-expressed molecule unfolded and precipitated upon heating to 44 degrees C, while the asialo and intact mammalian-expressed proteins remained soluble, with a Tm of 56 degrees C. From these experiments, the carbohydrate appears to play a critical role in stabilizing the erythropoietin molecule to denaturing conditions, and this increased stability does not depend on the presence of sialic acid.  相似文献   

18.
We report that protein 2C, the putative nucleoside triphosphatase/helicase protein of poliovirus, is required for the initiation of negative-strand RNA synthesis. Preinitiation RNA replication complexes formed upon the translation of poliovirion RNA in HeLa S10 extracts containing 2 mM guanidine HCI, a reversible inhibitor of viral protein 2C. Upon incubation in reactions lacking guanidine, preinitiation RNA replication complexes synchronously initiated and elongated negative-strand RNA molecules, followed by the synchronous initiation and elongation of positive-strand RNA molecules. The immediate and exclusive synthesis of negative-strand RNA upon the removal of guanidine demonstrates that guanidine specifically blocks the initiation of negative-strand RNA synthesis. Readdition of guanidine HCl to reactions synchronously elongating nascent negative-strand RNA molecules did not prevent their continued elongation and completion. In fact, readdition of guanidine HCl to reactions containing preinitiation complexes elongating nascent negative-strand RNA molecules had no effect on subsequent positive-strand RNA synthesis initiation or elongation. Thus, the guanidine-inhibited function of viral protein 2C was not required for the elongation of negative-strand RNA molecules, the initiation of positive-strand RNA molecules, or the elongation of positive-strand RNA molecules. The guanidine-inhibited function of viral protein 2C is required only immediately before or during the initiation of negative-strand RNA synthesis. We suggest that guanidine may block an irreversible structural maturation of protein 2C and/or RNA replication complexes necessary for the initiation of RNA replication.  相似文献   

19.
Two different types of insoluble, non-native aggregates of recombinant human growth hormone were formed by agitation in buffer or buffer containing 0.75 m guanidine HCl (GdnHCl) and characterized by infrared and second derivative UV spectroscopies. The degree of secondary structural perturbation was greater in the aggregates formed in 0.75 m GdnHCl. Both aggregate types were dissolved and refolded using high hydrostatic pressures in combination with either elevated temperature or non-denaturing levels of guanidine HCl or urea. The effects of a range of temperature, pressure, and chaotrope concentrations were tested and led to optimal conditions that approached 100% yield of native protein. The aggregates formed in 0.75 m GdnHCl required higher concentrations of urea or GdnHCl, or higher temperature or pressure for a yield equivalent to that for aggregates formed in buffer alone. Investigation of the effects of pressure, temperature, and chaotrope on unfolding of rhGH documented that under conditions used for optimal high pressure disaggregation and refolding, the native state is greatly favored thermodynamically (e.g. 25 kJ/mol at 2000 bar and 0.75 m GdnHCl). Dissolution of aggregates under pressure is a kinetically limited process. Comparison of refolding yields in GdnHCl and urea solutions suggest that pressure effects on electrostatic interactions do not dominate pressure effects on disaggregation. We suggest that non-native hydrogen bonds between protein molecules within aggregates of recombinant human growth hormone are responsible for the rate-limiting kinetic barrier in pressure-induced disaggregation.  相似文献   

20.
The ability of buffer solutions containing low concentrations of nonionic detergents (Triton X-100, Tween 20, Brij 58, and Lubrol PX) and the anionic detergent sodium deoxycholate, as well as mixtures of these detergents with chaeotropes (urea and guanidine hydrochloride), to extract intracellular proteins of Gram-negative microorganisms (Escherichia coli and Pseudomonas aeruginosa) was studied. It was established that the solutions containing Triton X-100 and sodium deoxycholate and the mixtures of these detergents with urea are the most effective. It was shown that the extraction of proteins from bacterial cells under the studied conditions is not accompanied by a release of DNA into solution but is associated with extraction of low-molecular RNAs. The level of protein extraction reaches 80%. No disruption of the bacterial cell wall occurs during the extraction, and proteins probably penetrate through meshes of the murein network. The efficiencies of our buffer mixtures are close to or higher than that of the commercial reagent CelLytic B (Sigma, United States). The practical uses of the chaeotropic mixtures developed are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号