首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. E. Ross  M. Munawar 《Hydrobiologia》1988,163(1):173-177
On three research cruises in 1981, zooplankton community filtration rates were measured at 4 stations: Saginaw Bay, mid-Lake Huron, Georgian Bay and North Channel. For all four stations, the highest rates were observed during the late-September cruise. The maximum observed rate was 137 000 ml d–1 m–3, while the lowest rate was 7200 ml d–1 m–3. The grazing experiments were performed on three size classes of radioactively labelled algal food (0.45–5 µm, 5–20 µm and 20–64 µm). In 11 of 12 experiments, the smallest size class of food yielded the highest filtration rate. For the late-May cruise we used published data on phytoplankton biomass for the Georgian Bay and North Channel stations to calculate community feeding rates of 0.09 and 0.015 mg C mg C m–3 d–1, respectively, and percent cropping rates of 0.74 and 0.35 per day, respectively. A comparison of our feeding rates to literature values for zooplankton biomass suggests that algal food alone may not be sufficient to sustain zooplankton growth at those stations.  相似文献   

2.
Carbon standing stocks and fluxes were studied in the lagoon of Tikehau atoll (Tuamotu archipelago, French Polynesia), from 1983 to 1988.The average POC concentration (0.7–2000 µm) was 203 mg C m–3. The suspended living carbon (31.6 mg C m–3) was made up of bacteria (53%), phytoplankton < 5 µm (14.2%), phytoplankton > 5 µm (14.2%), nanozooplankton 5–35 µm (5.7%), microzooplankton 35–200 µm (4.7%) and mesozooplankton 200–2000 µm (7.9%). The microphytobenthos biomass was 480 mg C m–2.Suspended detritus (84.4% of the total POC) did not originate from the reef flat but from lagoonal primary productions. Their sedimentation exceeded phytobenthos production.It was estimated that 50% of bacterial biomass was adsorbed on particles. the bacterial biomass dominance was explained by the utilisation of 1) DOC excreted by phytoplankton (44–175 mg C m–2 day –1) and zooplankton (50 mg Cm–2 day–1)2) organic compounds produced by solar-induced photochemical reactions 3) coral mucus.50% of the phytoplankton biomass belongs to the < 5 µm fraction. This production (440 mg C m–2 day–1) exceeded phytobenthos production (250 mg C m–2 day–1) when the whole lagoon was considered.The zooplankton > 35 µm ingested 315 mg C m–2 day–1, made up of phytoplankton, nanozooplankton and detritus. Its production was 132 mg C m–2 day–1.  相似文献   

3.
Contributions to the mesozooplankton of the northern Wadden Sea of Sylt. From June 1975 to June 1976 temperature, salinity, mesozooplankton (>76 µm), phytoplankton and seston (dry weight, particulate organic carbon and nitrogen) were measured at different stations in the northern Wadden Sea of Sylt (German Bight, North Sea). Maxima of the planktonic copepods, which form the biggest part of the zooplankton, occurred in the summer months from June to September. Larval development from nauplii to adults was observed inAcartia clausi, Acartia discaudata, Centropages hamatus andTemora longicornis; generation times ranged from 3 (Temora longicornis) to 7 1/2 weeks (Centropages hamatus) at ca. 20 °C. Organic carbon produced by zooplankton was about 0.4 g C m–3 year–1 and zooplanktonic carbon decomposed in the area studied amounted to about 1.4 g C m–3 year–1. Meroplanktonic larvae made up ca. 60 % of the organic carbon produced by zooplankton, indicating great influence of the benthos on the water column in this very shallow part of the German Bight.  相似文献   

4.
Plankton communities and hydrochemistry of an oligotrophic lake occupying a glacial valley in Argentinian Patagonia (42 °49S; 71 °43W) were studied. Monthly samples at three stations integrated from 0 to 50 m and stratified samples at the site of maximum depth, were taken during the growing season. Transparency was always controlled by glacial silt, and not by phytoplankton. Lake water belongs to the calcium-bicarbonate type, with low conductivity (24 µS cm–1), and poor buffering capacity. Forty-five phytoplankton taxa were found. Mean phytoplankton density was 49 cells ml–1 and mean biomass 69 µg l–1. N:P relationships, inorganic nitrogen exhaustion in the photic layer, and correlations between nutrients and phytoplankton density suggests nitrogen as the main limiting factor. Fifteen zooplankton species were found. Mean zooplankton density was 12.2 ind. l–1 and mean biomass 22.9 µg l–1. Diatoms and Boeckellidae were the dominant planktonic groups. Morphometry and hydrological factors were responsible for horizontal heterogeneity in phytoplankton and chemical variables.  相似文献   

5.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

6.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

7.
The plankton community, chlorophyll-a, heterotrophic bacteria and physical and chemical features of the Paranoá Reservoir were studied at monthly intervals at seven stations from March 1988 to March 1989. Thermal structure had a circulation period from May to July and stratification during the other months. The phytoplankton consisted of 76 taxa, was dominated by the cyanophyte Cylindrospermopsis raciborskii and attained concentrations ranging from 7,759,000 up to 98,160,000 org. l–1. The zooplankton consisted of 36 taxa and was present in densities between 8 and 8,056 org. l–1. In stations, or seasons with highly eutrophic conditions, there was a decrease in total phytoplankton and an increase in bacteria and total zooplankton. The results had spatial and temporal variations. Spatial variation demonstrated the existence of water quality deterioration at two or three sampling points. Temporal variation showed the influences of water column stability and the dry versus rainy seasons on nutrient concentrations and the planktonic community.  相似文献   

8.
An enclosure experiment was conducted to assess the effects of a zooplankton elimination on the structure of a phytoplankton community. Phytoplankton biomass and production were higher in grazer-free enclosures, while the productivity per unit biovolume was lower. Exclusion of zooplankton favoured the majority of algal species, especially chrysophyceans (Dinobryon spp.) and the diatom Rhizosolenia, while mucilagineous green-algae were disfavoured. Middle sized algae (ESD 15–50 µm) and those with the largest Surface Area/Volume ratio were proportionally most favoured by the elimination of grazers.These differences in phytoplankton community structure are discussed in relation to effects of direct selective grazing and nutrient recycling by zooplankton. Some differences, as the immediate positive response of Dinobryon and Rhizosolenia, are probably caused by grazing release, while others, e.g. the response of mucilagineous species, might be caused by changed competitive relationships between the algae.  相似文献   

9.
Trophic cascading in an oligotrophic temperate estuary, South Africa   总被引:4,自引:0,他引:4  
Trophic cascading resulting from the coupling between componentsof the microbial food comprising bacteria, phytoplankton andprotozooplankton [nano- (2–20 µm) and microzooplankton(20–200 µm)] and mesozooplankton (copepods) (200–2000µm) was investigated at three stations in the oligotrophictemperate Kariega estuary during the summer (February) and winter(May) 2001. Total chlorophyll a (Chl a) was dominated by picophytoplankton(<2 µm) throughout the study comprising between 55and 74% of the total pigment during summer and between 64 and78% of the total during winter. Among the heterotrophic componentsof the pelagic food web, nanozooplankton (HNAN) were identifiedas the most important consumers of bacteria and microzooplankton(MICRO) the primary consumers of Chl a. The low impact of themesozooplankton (MESO) on the Chl a appears to be related tothe size structure of the phytoplankton community in the estuarywhich is too small to be grazed efficiently by the larger zooplankton.In response to the unfavourable size structure of the phytoplanktoncommunity in the estuary, it is suggested that the MESO consumeHNAN, MICRO and/or detritus. The negative impact of the MESOon the net growth rates of the HNAN and MICRO resulted in adecrease in the feeding impact of these organisms on the Chla < 2 µm and bacteria. This result is consistent withthe expectations of predator–prey cascades.  相似文献   

10.
Mesozooplankton community structure and grazing impact were investigated at 15 stations in the west-Indian sector of the Polar Frontal Zone during the third dynamics of Eddie impacts on Marions ecosystem cruise, conducted during April 2004. An intense frontal feature, likely the convergence of the Sub-Antarctic and Antarctic Polar Fronts, was identified running in a north-eastward direction across the survey area. Total integrated chlorophyll-a (chl-a) biomass ranged from 4.15 mg m–2 to 22.81 mg m–2 and was dominated by picophytoplankton at all stations. Mesozooplankton abundances ranged from 163.84 ind m–2 to 2,478.08 ind m–2 and biomass between 6.70 mg Dwt. m–2 and 23.40 mg Dwt. m–2. The mesozooplankton community was dominated almost entirely by copepods, which contributed between 35% and 79% (mean=63%; SD=±12%) of the total numbers. The pteropoda, Limacina retroversa, contributed up to 30% (mean=10%; SD=± 8%) of the total numbers. Numerical analysis identified two distinct mesozooplankton communities separated by the intense frontal feature, namely the Antarctic and the Sub-Antarctic Zone Groups. Ingestion rates of the four numerically dominant copepod species (Calanus simillimus, Clausocalanus spp., Ctenocalanus spp. and Oithona similis) and the pteropod, L. retroversa, were estimated using the gut fluorescence technique. Total grazing impact ranged from 0.156 mg (pigm) m–2 to 2.958 mg (pigm) m–2 or between 1% and 29% of the available chl-a per day. The four copepods contributed approximately 36% of the total daily grazing impact, while the pteropod contributed to a mean of 64%, indicating that this zooplankton group may play an important role in the Southern Ocean carbon cycle. In general, the highest daily grazing impact was exhibited in the Antarctic Zone Group (mean=12% phytoplankton standing stock per day).  相似文献   

11.
Olsson  Håkan  Blomqvist  Peter  Olofsson  Hans 《Hydrobiologia》1992,(1):147-155
Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l–1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l–1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.  相似文献   

12.
Mesozooplankton abundance, community structure and grazing impact were determined during late austral summer (February/March) 1994 at eight oceanic stations near South Georgia using samples collected with a Bongo and WP-2 nets in the upper 200-m and 100-m layer, respectively. The zooplankton abundance was generally dominated by copepodite stages C3–C5 of six copepod species: Rhincalanus gigas, Calanus simillimus, Calanoides acutus, Metridia spp., Clausocalanus laticeps and Ctenocalanus vanus. Most copepods had large lipid sacs. All copepods accounted for 41–98% of total zooplankton abundance. Juvenile euphausiids were the second most important component contributing between 1 and 20% of total abundance. Pteropods, mainly Limacina inflata, were important members of the pelagic community at two sites, accounting for 44 and 53% of total abundance. Average mesozooplankton biomass in the upper 200 m was 8.0 g dry weight m−2, ranging from 4.3 to 11.5 g dry weight m−2. With the exception of Calanussimillimus, gut pigment contents and feeding activity of copepod species were low, suggesting that some species, after having stored large lipid reserves, had probably started undergoing developmental arrest. Daily mesozooplankton grazing impact, measured using in situ gut fluorescence techniques and in vitro incubations, varied widely from <1 to 8% (mean 3.5%) of phytoplankton standing stock, and from 5 to 102% (mean 36%) of primary production. The highest grazing impact was found northeast of the island co-incident with the lowest phytoplankton biomass and primary production levels. Received: 30 October 1996 / Accepted: 23 February 1997  相似文献   

13.
Summary Phyto- and protozooplankton were sampled in the upper 10 m of the water column in austral summer during a cruise of RV Polarstern from January 6 to February 20 1985 in the eastern Bransfield Strait vicinity and in the northern, southeastern (off Vestkapp, twice: I and II) and southern Weddell Sea (Vahsel Bay across the Filchner Depression to Gould Bay). The plankton assemblages are discussed in relation to physical, chemical and biological factors in the different geographical areas in summer. Phytoplankton biomass (Phytoplankton carbon, PPC) ranged from 4–194 g carbon/l and consisted on average of 65% diatoms and 35% autotrophic flagellates. Whereas in the northwest phytoplankton assemblages were dominated by small nanoflagellates (78% of PPC), higher biomass of diatoms (54–94% of PPC) occurred at the other sampling sites. In general autotrophic flagellates and small pennate diatoms dominated at oceanic stations; in neritic areas large centric diatoms prevailed. Chlorophyll a concentrations ranged from 0.25–3.14/g chl a/l with a mean of 1.13/gmg chlorophyll a/l and an average phytoplankton carbon/chlorophyll a ratio of 39. Protozooplankton biomass (Protozooplankton carbon, PZC) ranged from 0–67 g carbon/l and consisted of 49% ciliates, 49% heterotrophic dinoflagellates and 2% tintinnids. Heterotrophic dinoflagellates were more important in the northern investigation areas (58%–84% of PZC). Ciliates dominated the protozooplankton in the southeast and south (56%–65% of PZC); higher abundances of tintinnids were observed only in the south (11% of PZC). The most remarkable feature of the surface waters was the high protozooplankton biomass: protozooplankton amounted to 25% on an average of the combined biomass of PPC plus PZC for the entire investigation period. Protozoan biomass in the southeastern and southern Weddell Sea occasionally exceeded phytoplankton biomass. Temperature, salinity, and inorganic nutrients were generally lower in the southern regions; at most of these stations a meltwater layer occurred in the upper meters of the water column. We suggest that this physical regime allows a well developed summer system with a high proportion of heterotrophic microplankton. In the eastern Bransfield Strait, in the northern Weddell Sea and close to the coast off Vestkapp (I), however, early summer conditions occurred with less protozooplankton contribution.Contribution no. 427 from the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

14.
This study documents for the first time both vertical and horizontal distribution patterns of the zooplankton community in Lake Kinneret during the period of thermal stratification. The zooplankton distribution patterns were explored in relation to abiotic (temperature, oxygen) and biotic (picocyanobacteria, ciliates, flagellates, phytoplankton, fish) environmental gradients. Sampling was carried out on 6–7 July 1992 at five stations and six depths from nearshore to offshore. Zooplankton abundance and biomass varied from 5 to 267 ind. l–1(mean: 95 ind. l–1), and from 0.1 to 65 d.w. mg m–3(mean: 24 d.w. mg m–3). Zooplankton taxonomic groups (Rotifera, Cladocera, Cyclopoida, Calanoida) and size classes (micro-, meso- and macrozooplankton) showed peaks of maximal density and biomass in the epilimnetic and metalimnetic strata (5 and 14 m). Depth, accounting for 31–39% of total spatial variation, reflected the vertical distribution of zooplankton in relation to temperature and oxygen declines, and the higher concentration of food resources (protists and phytoplankton) in the epilimnion and metalimnion. Onshore–offshore distance, accounting for 17–22% of the total spatial variance, reflected different distribution patterns shown among zooplankton groups and size classes. The macrozooplankton (Copepoda, Cladocera) was more abundant offshore, whereas microzooplankton (Rotifera and nauplii) predominated nearshore. These horizontal distribution patterns were related to small increases in temperature and phytoplankton biomass, and higher concentrations of fish in the littoral zone. Although limited to a short temporal scale, our study indicated that zooplankton spatial distribution in Lake Kinneret during the period of thermal stratification was related to physicochemical, food and predation factors, manifested differently along the vertical and nearshore–offshore gradients.  相似文献   

15.
The phytoplankton productivity of Georgian Bay was studied during 1974. Lakewide samples were collected at 16 stations during monthly cruises from April to December and identification and enumeration was carried out by the Utermohl technique. Contaminant bioassays with metals added singly and as a mixture were performed in 1980 and 1981. Based on an overall average, Diatomeae (36–73%) was the most prevalent component of phytoplankton biomass followed by Chrysophyceae (5–38%), and Cyanophyta (3–27%). Biomass means of all stations by cruise indicated a range of 0.35 to 0.61 g·m–3 with a bimodal seasonal pattern. Although ultraplankton made the highest mean percent contribution to the biomass (37%), the other size assemblages such as < 5 µm (26%) and netplankton (29%) were not unimportant.Size fractionation of primary productivity during 1974 revealed that a major portion of photosynthesis (39–70%) was in the <20 µm size fraction. Algal Fractionation Bioassays conducted during 1980 and 1981 indicated a significant inhibition of ultraplankton productivity. Additional bioassays with single metals and in combination showed differential toxicity to various phytoplankton size assemblages.The phytoplankton biomass and floristic composition indicate the Georgian Bay ecosystem to be oligotrophic. This ecosystem appears to be controlled by the physical dynamics of thermal and flow regimes. Compared with other Great Lakes, the low P/B quotients recorded in oligotrophic Georgian Bay is enigmatic and may be attributable to the observed sensitivity of phytoplankton to contaminants originating from anthropogenic and natural sources.  相似文献   

16.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

17.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

18.
The ETS-activity of microplankton (1–60 µm), net zooplankton (60–250 µm and > 250 µm) and sediment was measured in the hypertrophic Keszthely-basin and in the meso-eutrophic Siófok-basin of Lake Balaton in 1988–1989.Six times higher microplanktonic and 1.35–1.75 times higher zooplanktonic ETS-activities l–1 were found in the Keszthely-basin than in the Siófok-basin. The equivalent relationship for the microplanktonic ETS-activity m–2 was 3.83–3.93 to 1 in 1988 and 1989. This ratio in the case of the zooplankton was 1.07–1.09 to 1. The zooplanktonic ETS-activity represented 6.0–10.8% of the total measured sestonic ETS-activity in the Keszthely-basin and 19.0–30.5% of that in the Siófok-basin in 1988 and 1989. The results suggest a decreasing trend in the contribution of net zooplankton metabolic activity in the whole metabolism of the water column with increasing primary production.The sediment was biologically active to 30–35 cm depth in the Keszthely-basin and to 15–20 cm depth in the Siófok-basin. In the Keszthely-basin and in the Siófok-basin, relative decrease in the sediment ETS-activity cm–3 with depth were 10% cm–1 and 25% cm–1 respectively. The sediment ETS-activity m–2 was much higher than that in the plankton: 7.8 times in the Keszthely-basin and 9.3 times in the Siófok-basin. The Keszthely-Siófok basins ratio for the sediment ETS-activity m–2 was 3 to 1.According to the ETS-activity data, Lake Balaton plankton itself can oxidize all the organic matter produced in the water column. The sestonic and sediment respiratory potentials together are much higher than is necessary for complete oxidation of the plankton-assimilated carbon.  相似文献   

19.
The phytoplankton dynamics of a Chinese integrated fish culture pond in the suburbs of Shanghai were studied in September and October 1989. The chlorophyll a concentration was high with a range of 62.5–127.3 µg l–1; however, daily net production of phytoplankton was relatively low, with a range of 0.53–1.94 gC m –2 d–1. Of the total phytoplankton biomass, 70–87% was composed of nanoplankton (<10 µm) and picoplankton, probably because of the selective feeding by phytoplanktivorous carp. In particular, the chlorophyll a concentration of picoplankton was 2.1 – 14.1 mg m –3, and its contribution to total phytoplankton production rate was high (18–68%).  相似文献   

20.
春季长江口邻近外海网采浮游生物的生物量谱   总被引:6,自引:0,他引:6  
左涛  王俊  金显仕  李忠义  唐启升 《生态学报》2008,28(3):1174-1182
对2005年春季黄海南部、东海北部近江口外海水域网采的浮游生物个体大小的粒径分布进行研究,确定各粒级大小的功能群组成,建立此季该调查水域网采浮游生物的生物量谱.样品是用小、中、大型浮游生物网(网孔径为77、160、 505μm)采集所得.三网具采集浮游生物个体大小粒径是连续的,其中浮游植物,其等效粒径(ESD)和含碳量范围分别为5~250μm、15pg~146ng;浮游动物,含碳量范围为115ng~7.5mg,ESD分别为120μm~5.8mm、200μm~2cm.所得网采浮游生物的标准生物量谱,总测区的斜率为-0.607±0.059、截距为19.45±0.46;各站位的生物量谱斜率为-0.889~-0.455、截距为12.866~16.863,两特征参数分布规律为南高北低,且具有显著的站位间差异.相关性分析表明截距和回归系数与粒级多样性有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号