首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replacement of glycine by aspartic acid at either of two sites in a conserved, glycine-rich region inactivates the pyridoxal 5'-phosphate-dependent enzyme D-serine dehydratase (DSD) from Escherichia coli. To investigate why aspartic acid at position 279 or 281 causes a loss of activity, we measured the affinity of the G----D variants for pyridoxal 5'-phosphate and a cofactor:substrate analog complex and compared the UV, CD, and fluorescence properties of wild-type D-serine dehydratase and the inactive variants. The two G----D variants DSD(G279D) and DSD (G281D) displayed marked differences from wild-type D-serine dehydratase and from each other with respect to their affinity for pyridoxal 5'-phosphate and for a pyridoxal 5'-phosphate:glycine Schiff base. Compared to the wild-type enzyme, the cofactor affinity of DSD(G279D) and DSD(G281D) was decreased 225- and 50-fold, respectively, and the ability to retain a cofactor:glycine complex was decreased 765- and 1970-fold. The spectral properties of the inactive variants suggest that they form a Schiff base linkage with pyridoxal 5'-phosphate but do not hold the cofactor in a catalytically competent orientation. Moreover, the amount of cofactor aldamine in equilibrium with cofactor Schiff base is increased in DSD(G279D) and DSD(G281D) relative to that in wild-type DSD. Collectively, our findings indicate that introduction of a carboxymethyl side chain at G-279 or G-281 directly or indirectly disrupts catalytically essential protein-cofactor and protein-substrate interactions and thereby prevents processing of the enzyme bound cofactor:substrate complex. The conserved glycine-rich region is thus either an integral part of the D-serine dehydratase active site or conformationally linked to it.  相似文献   

2.
We have used site-directed mutagenesis to examine the function of three putative active site residues (C278, G279, and G281) of the vitamin B6 enzyme D-serine dehydratase. These residues lie in or adjacent to a conserved glycine-rich loop that is known to interact with the pyridoxal 5'-phosphate cofactor in several B6 enzymes and that resembles the GXGXXG loop of nucleotide-binding sites. The cofactor affinity, catalytic properties, and spectral properties (UV, CD, fluorescence, and 31P NMR) of alanine variants C278A, G279A, and G281A were measured as well as the susceptibility of each variant to thiol modification by 5,5'-dithiobis(2-nitrobenzoic acid). The specific thiols modified in each variant and wild type D-serine dehydratase were identified by amino acid sequencing of labeled tryptic peptides. C278A, G279A, and G281A displayed 10-, 33-, and 22-fold lower affinities for pyridoxal 5'-phosphate than did wild type D-serine dehydratase and turnover numbers with D-serine that were 50, 6, and 60% of normal, respectively. The introduction of a methyl side chain into G281 enhanced catalytic efficiency with the substrates D-threonine, D-allo-threonine, and L-serine, whereas the methyl side chain at position 279 impaired catalysis of all substrates as well as cofactor affinity. The 31P NMR spectrum of D-serine dehydratase was minimally perturbed by the alanine substitutions, consistent with the view that neither G279 nor G281 interacts with the phosphate group of the cofactor (in contrast to the arrangement found in several other B6 enzymes). C311 was the single thiol modified by 5,5'-dithiobis(2-nitrobenzoic acid) in wild type D-serine dehydratase. Two normally inaccessible thiol groups, C233 and C278, were rendered susceptible to modification as a consequence of either G----A substitution, and modification of C278 was associated with inactivation of G279A and G281A. These observations suggest that small perturbations in the glycine-rich loop induce conformational changes spanning a considerable area around the active site.  相似文献   

3.
We have employed site-directed mutagenesis to investigate the contribution of a conserved arginyl residue to the catalytic activity and cofactor affinity of D-serine dehydratase, a model pyridoxal 5'-phosphate (vitamin B6) enzyme. Replacement of R-120 in the active site peptide of D-serine dehydratase by L decreased the affinity of the enzyme for pyridoxal 5'-phosphate by 20-fold and reduced turnover by 5-8-fold. kappa cat displayed modified substrate alpha-deuterium isotope effects and altered dependence on both temperature and pH. Analysis of the pH rate profiles of DSD and the R-120----L variant indicated that R-120 interacts electrostatically with catalytically essential ionizable groups at the active site of wild type D-serine dehydratase. The decrease in cofactor affinity observed for DSD(R120L) was not accompanied by significant perturbations in the UV, CD, or 31P NMR spectrum of the holoenzyme, suggesting that the contribution of R-120 to pyridoxal phosphate affinity may be indirect or else involve an interaction with a cofactor functional group other than the 5'-phosphoryl moiety. The properties of two other site-directed variants of D-serine dehydratase indicated that the pyridoxal 5'-phosphate:K-118 Schiff base was indifferent to a small change in the shape of the side chain at position 117 (I-117----L), whereas replacement of K-118 by H resulted in undetectable levels of enzyme. A poor ability to bind cofactor may have rendered DSD(K118H) susceptible to intracellular proteolysis.  相似文献   

4.
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5'-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97?-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55? resolution. The structure of DSD reveals a larger pyridoxal 5'-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.  相似文献   

5.
2,3-Diaminopropionate ammonia-lyase (DAPAL), which catalyzes alpha,beta-elimination of 2,3-diaminopropionate regardless of its stereochemistry, was purified from Salmonella typhimurium. We cloned the Escherichia coli ygeX gene encoding a putative DAPAL and purified the gene product to homogeneity. The protein obtained contained pyridoxal 5'-phosphate and was composed of two identical subunits with a calculated molecular weight of 43,327. It catalyzed the alpha,beta-elimination of both D- and L-2,3-diaminopropionate. The results confirmed that ygeX encoded DAPAL. The enzyme acted on D-serine, but its catalytic efficiency was only 0.5% that with D-2,3-diaminopropionate. The enzymologic properties of E. coli DAPAL resembled those of Salmonella DAPAL, except that L-serine, D-and L-beta-Cl-alanine were inert as substrates of the enzyme from E. coli. DAPAL had significant sequence similarity with the catalytic domain of L-threonine dehydratase, which is a member of the fold-type II group of pyridoxal phosphate enzymes, together with D-serine dehydratase and mammalian serine racemase.  相似文献   

6.
YGL196W of Saccharomyces cerevisiae encodes a putative protein that is unidentified but is predicted to have a motif similar to that of the N-terminal domain of the bacterial alanine racemase. In the present study we found that YGL196W encodes a novel D-serine dehydratase, which belongs to a different protein family from that of the known bacterial enzyme. The yeast D-serine dehydratase purified from recombinant Escherichia coli cells depends on pyridoxal 5'-phosphate and zinc, and catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. D-Threonine and beta-Cl-D-alanine also serve as substrates with catalytic efficiencies which are approx. 3 and 2% of D-serine respectively. L-Serine, L-threonine and beta-Cl-L-alanine are inert as substrates. Atomic absorption analysis revealed that the enzyme contains one zinc atom per enzyme monomer. The enzyme activities toward D-serine and D-threonine were decreased by EDTA treatment and recovered by the addition of Zn2+. Little recovery was observed with Mg2+, Mn2+, Ca2+, Ni2+, Cu2+, K+ or Na+. In contrast, the activity towards beta-Cl-D-alanine was retained after EDTA treatment. These results suggest that zinc is involved in the elimination of the hydroxy group of D-serine and D-threonine. D-Serine dehydratase of S. cerevisiae is probably the first example of a eukaryotic D-serine dehydratase and that of a specifically zinc-dependent pyridoxal enzyme as well.  相似文献   

7.
D-Serine dehydratase from Escherichia coli is a member of the β-family (fold-type II) of the pyridoxal 5′-phosphate-dependent enzymes, catalyzing the conversion of D-serine to pyruvate and ammonia. The crystal structure of monomeric D-serine dehydratase has been solved to 1.97 Å-resolution for an orthorhombic data set by molecular replacement. In addition, the structure was refined in a monoclinic data set to 1.55 Å resolution. The structure of DSD reveals a larger pyridoxal 5′-phosphate-binding domain and a smaller domain. The active site of DSD is very similar to those of the other members of the β-family. Lys118 forms the Schiff base to PLP, the cofactor phosphate group is liganded to a tetraglycine cluster Gly279-Gly283, and the 3-hydroxyl group of PLP is liganded to Asn170 and N1 to Thr424, respectively. In the closed conformation the movement of the small domain blocks the entrance to active site of DSD. The domain movement plays an important role in the formation of the substrate recognition site and the catalysis of the enzyme. Modeling of D-serine into the active site of DSD suggests that the hydroxyl group of D-serine is coordinated to the carboxyl group of Asp238. The carboxyl oxygen of D-serine is coordinated to the hydroxyl group of Ser167 and the amide group of Leu171 (O1), whereas the O2 of the carboxyl group of D-serine is hydrogen-bonded to the hydroxyl group of Ser167 and the amide group of Thr168. A catalytic mechanism very similar to that proposed for L-serine dehydratase is discussed.  相似文献   

8.
The 31P NMR spectroscopy of three pyridoxal 5'-phosphate-dependent enzymes, monomeric D-serine dehydratase, tetrameric dialkylglycine decarboxylase and tetrameric tyrosine phenol-lyase, whose enzymatic activities are dependent on alkali metal ions, was studied. 31P NMR spectra of the latter two enzymes have never been reported, their 3D-structures, however, are available. The cofactor phosphate chemical shift of all three enzymes changes by approximately 3 ppm as a function of pH, indicating that the phosphate group changes from being monoanionic at low pH to dianionic at high pH. The 31P NMR signal of the phosphate group of pyridoxal 5'-phosphate provides a measure of the active site changes that occur when various alkali metal ions are bound. Structural information is used to assist in the interpretation of the chemical shift changes observed. For D-serine dehydratase, no structural data are available but nevertheless the metal ion arrangement in the PLP binding site can be predicted from 31P NMR data.  相似文献   

9.
A cDNA encoding chicken glycine decarboxylase (pCP15b) was isolated using an antibody specific to this protein. Additional cDNAs were cloned with the aid of the genomic fragments obtained by using the pCP15b cDNA probe. No initiator methionine codon is found in the currently elucidated cDNA sequence, and an ATG codon in an exon is assigned to this role. The precursor glycine decarboxylase deduced from the 3514-base pair nucleotide sequence is comprised of 1,004 amino acids (Mr = 111,848). The 1,020 amino acid residues are encoded for the precursor form of human glycine decarboxylase (Mr = 112,869) in the 3,783-base long cDNA sequence of two 1.9-kilobase pair cDNAs with a pentanucleotide overlap. The pyridoxal phosphate binding site lysine and a glycine-rich region, which is suggested to be responsible for the attachment of the phosphate moiety of pyridoxal phosphate, are found in close proximity in both the chicken and human enzymes. This region essential for the enzyme action is suggested to be embedded in a segment rich in beta-turns and random coils and is surrounded by conserved and repetitive amino acid sequences. It is suggested that these structures are involved in the organization of the active site of glycine decarboxylase.  相似文献   

10.
Szebenyi DM  Liu X  Kriksunov IA  Stover PJ  Thiel DJ 《Biochemistry》2000,39(44):13313-13323
Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. This reaction generates single carbon units for purine, thymidine, and methionine biosynthesis. The enzyme is a homotetramer comprising two obligate dimers and four pyridoxal phosphate-bound active sites. The mammalian enzyme is present in cells in both catalytically active and inactive forms. The inactive form is a ternary complex that results from the binding of glycine and 5-formyltetrahydrofolate polyglutamate, a slow tight-binding inhibitor. The crystal structure of a close analogue of the inactive form of murine cytoplasmic SHMT (cSHMT), lacking only the polyglutamate tail of the inhibitor, has been determined to 2.9 A resolution. This first structure of a ligand-bound mammalian SHMT allows identification of amino acid residues involved in substrate binding and catalysis. It also reveals that the two obligate dimers making up a tetramer are not equivalent; one can be described as "tight-binding" and the other as "loose-binding" for folate. Both active sites of the tight-binding dimer are occupied by 5-formyltetrahydrofolate (5-formylTHF), whose N5-formyl carbon is within 4 A of the glycine alpha-carbon of the glycine-pyridoxal phosphate complex; the complex appears to be primarily in its quinonoid form. In the loose-binding dimer, 5-formylTHF is present in only one of the active sites, and its N5-formyl carbon is 5 A from the glycine alpha-carbon. The pyridoxal phosphates appear to be primarily present as geminal diamine complexes, with bonds to both glycine and the active site lysine. This structure suggests that only two of the four catalytic sites on SHMT are catalytically competent and that the cSHMT-glycine-5-formylTHF ternary complex is an intermediate state analogue of the catalytic complex associated with serine and glycine interconversion.  相似文献   

11.
31P NMR studies were undertaken to determine how potassium ion increases the cofactor affinity of Escherichia coli D-serine dehydratase, a model pyridoxal 5'-phosphate requiring enzyme that converts the growth inhibitor D-serine to pyruvate and ammonia. Potassium ion was shown to promote the appearance of a second upfield shifted cofactor 31P resonance at 4.0 ppm (pH 7.8, 25 degrees C), that increased in area at the expense of the resonance at 4.4 ppm observed in the absence of K+. Na+ antagonized the K+ promoted appearance of the second resonance. These observations suggest that K+ and Na+ stabilize conformational states that differ with respect to O-P-O bond angle, conformation, and/or hydrogen bonding of the phosphate group. An analysis of the dependence of the relative intensities of the two resonances on the K+ concentration yielded a value of ca. 10 mM for the equilibrium constant for dissociation of K+ from D-serine dehydratase. The chemical shift difference between the two resonances indicated that the K+-stabilized and Na+-stabilized forms of the enzyme interconvert at a frequency less than 16 s-1 at pH 7.8, 25 degrees C.  相似文献   

12.
C Parsot 《The EMBO journal》1986,5(11):3013-3019
The Bacillus subtilis genes encoding threonine synthase (thrC) and homoserine kinase (thrB) have been cloned via complementation of Escherichia coli thr mutants. Determination of their nucleotide sequences indicates that the thrC stop codon overlaps the thrB start codon; this genetic organization suggests that the two genes belong to the same operon, as in E. coli. However, the gene order is thrC-thrB in B. subtilis whereas it is thrB-thrC in the thr operon of E. coli. This inversion of the thrC and thrB genes between E. coli and B. subtilis is indicative of a possible independent construction of the thr operon in these two organisms. In other respects, comparison of the predicted amino acid sequences of the B. subtilis and E. coli threonine synthases with that of Saccharomyces cerevisiae threonine dehydratase and that of E. coli D-serine dehydratase revealed extensive homologies between these pyridoxal phosphate-dependent enzymes. This sequence homology, which correlates with similarities in the catalytic mechanisms of these enzymes, indicates that these proteins, catalyzing different reactions in different metabolic pathways, may have evolved from a common ancestor.  相似文献   

13.
Our studies, which are aimed at understanding the catalytic mechanism of the alpha subunit of tryptophan synthase from Salmonella typhimurium, use site-directed mutagenesis to explore the functional roles of aspartic acid 60, tyrosine 175, and glycine 211. These residues are located close to the substrate binding site of the alpha subunit in the three-dimensional structure of the tryptophan synthase alpha 2 beta 2 complex. Our finding that replacement of aspartic acid 60 by asparagine, alanine, or tyrosine results in complete loss of activity in the reaction catalyzed by the alpha subunit supports a catalytic role for aspartic acid 60. Since the mutant form with glutamic acid at position 60 has partial activity, glutamic acid 60 may serve as an alternative catalytic base. The mutant form in which tyrosine 175 is replaced by phenylalanine has substantial activity; thus the phenolic hydroxyl of tyrosine 175 is not essential for catalysis or substrate binding. Yanofsky and colleagues have identified many missense mutant forms of the alpha subunit of tryptophan synthase from Escherichia coli. Two of these inactive mutant forms had either tyrosine 175 replaced by cysteine or glycine 211 replaced by glutamic acid. Surprisingly, a second-site revertant which contained both of these amino acid changes was partially active. These results indicated that the second mutation must compensate in some way for the first. We now extend the studies of the effects of specific amino acid replacements at positions 175 and 211 by two techniques: 1) characterization of several mutant forms of the alpha subunit from S. typhimurium prepared by site-directed mutagenesis and 2) computer graphics modeling of the substrate binding site of the alpha subunit using the x-ray coordinates of the wild type alpha 2 beta 2 complex from S. typhimurium. We conclude that the restoration of alpha subunit activity in the doubly altered second-site revertant results from restoration of the proper geometry of the substrate binding site.  相似文献   

14.
De Miranda J  Santoro A  Engelender S  Wolosker H 《Gene》2000,256(1-2):183-188
High levels of D-serine are found in mammalian brain, where it is an endogenous agonist of the strichinine-insensitive site of N-methyl D-aspartate type of glutamate receptors. D-serine is enriched in protoplasmic astrocytes that occur in gray matter areas of the brain and was shown to be synthesized from L-serine. We now report cloning and expression of human serine racemase, an enzyme that catalyses the synthesis of D-serine from L-serine. The enzyme displays a high homology to the murine serine racemase. It contains a pyridoxal 5'-phosphate attachment sequence similar to bacterial biosynthetic threonine dehydratase. Northern-blot analysis show high levels of human serine racemase in areas known to contain large amounts of endogenous D-serine, such as hippocampus and corpus callosum. Robust synthesis of D-serine was detected in cells transfected with human serine racemase, demonstrating the conservation of D-amino acid metabolism in humans. Serine racemase may be a therapeutic target in psychiatric diseases as supplementation of D-serine greatly improves schizophrenia symptoms. We identify the human serine racemase genomic structure and show that the gene encompasses seven exons and localizes to chromosome 17q13.3. Identification of the intron-exon boundaries of the human serine racemase gene will be useful to search for mutations in neuropsychiatric disorders.  相似文献   

15.
The Saccaromices cerevisiae D-serine dehydratase is a pyridoxal 5'-phosphate dependent enzyme that requires zinc for its function. It catalyses the conversion of D-serine into pyruvate and ammonia with the K(m) and k(cat) values of 0.39 mM and 13.1 s(-1) respectively. In this work, a new methodology for monitoring D-serine is presented. Our results show that this enzyme could be successfully used as a biological probe for detection of D-serine via fluorescence spectroscopy.  相似文献   

16.
The primary D-serine deaminase (D-serine dehydratase, EC 4.2.1.14) of Escherichia coli K-12 is unstable within the cell. The protein, a single polypeptide chain, is cleaved at a lysine residue by a cellular proteolytic activity. Fragments containing the active site then aggregate into tetramers, which retain substrate affinity and show very low catalytic activity. Such degradations may represent an evolutionary mechanism for the generation of new enzymes.  相似文献   

17.
Treatment of homogeneous preparations of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli, a pyridoxal 5'-phosphate-dependent enzyme, with phenylglyoxal, 4-(oxyacetyl)phenoxyacetic acid, 2,3-butanedione, or 1,2-cyclohexanedione results in a time- and concentration-dependent loss of enzymatic activity. Phenylglyoxal in 50 mM phosphate buffer (pH 7.0) is the most effective modifier, causing > 95% inactivation within 20 min at 25 degrees C. Controls establish that this inactivation is not due to modifier-induced dissociation or photoinduced nonspecific alteration of the ligase. The substrate, acetyl CoA, or the coenzyme, pyridoxal 5'-phosphate, gives > 50% protection against inactivation. Enzyme partially inactivated by phenylglyoxal has the same Km value for glycine but the Vmax decreases in proportion to the observed level of inactivation. Whereas the native apoligase shows good recovery of activity with time in parallel with an increase in 428-nm absorptivity when incubated with pyridoxal 5'-phosphate, no such effects are seen with the phenylglyoxal-modified apoligase. Reaction of the enzyme with [14C]phenylglyoxal allowed for the isolation of a peptide which, by amino acid composition and sequencing data, was found to correspond to residues 349-378 in the intact enzyme. These results indicate that arginine residue-366 and/or residue-368 in the primary structure of E. coli 2-amino-3-ketobutyrate ligase is at the active site.  相似文献   

18.
D-Serine dehydratase [EC 4.2.1.14] was purified from a strain of Klebsiella pneumoniae 140-fold from crude extract with a yield of 5%. This enzyme catalyzed formation of pyruvate and ammonia not only from D-serine but also from L-serine, and also catalyzed the formation of alpha-ketobutyrate and ammonia from D-threonine. Km values for D-serine, L-serine, and D-threonine were 2.8 mM, 20 mM, and 3.6 mM, respectively. Km for pyridoxal 5'-phosphate was 2.5 micron. The molecular weight was estimated to be 46,000 by Sephadex G-150 gel filtration and 40,000 by SDS-polyacrylamide gel electrophoresis. This enzyme was inducible by D-serine. Induction by casamino acids appeared to depend on the presence of D-serine.  相似文献   

19.
A three-dimensional model of the Streptomyces coelicolor actinorhodin beta-ketoacyl synthase (Act KS) was constructed based on the X-ray crystal structure of the related Escherichia coli fatty acid synthase condensing enzyme beta-ketoacyl synthase II, revealing a similar catalytic active site organization in these two enzymes. The model was assessed by site-directed mutagenesis of five conserved amino acid residues in Act KS that are in close proximity to the Cys169 active site. Three substitutions completely abrogated polyketide biosynthesis, while two replacements resulted in significant reduction in polyketide production. (3)H-cerulenin labeling of the various Act KS mutant proteins demonstrated that none of the amino acid replacements affected the formation of the active site nucleophile.  相似文献   

20.
A 3969-base pair PstI-PstI fragment of Pseudomonas cepacia DNA containing the gene for the pyridoxal 5'-phosphate dependent 2,2-dialkylglycine decarboxylase (pyruvate) (EC 4.1.1.64) was cloned in Escherichia coli. The insert was sequenced by the dideoxy method using nested deletions from both ends, revealing a central 1302-base pair region that codes for the decarboxylase subunit. The recombinant enzyme was expressed in E. coli, purified to homogeneity, and sequenced at the amino terminus. Also, a cofactor-labeled active site peptide was sequenced. The carboxyl terminus of the deduced amino acid sequence is homologous with the carboxyl terminus of mammalian ornithine aminotransferase; the active site sequence is similar to the active site sequences of several other aminotransferases. No homologies with known decarboxylase sequences could be found. Expression of the decarboxylase gene is negatively controlled by a 687-nucleotide sequence upstream of and diverging from the structural gene. Expression is induced by S-isovaline, 2-methylalanine, and D-2-aminobutanoic acid, but not by glycine, D- or L-alanine, L-2-aminobutanoic acid, R-isovaline, or other alkyl amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号