首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cuticles of plants of the Saxifragaceae, Rosaceae and Leguminosae are compared by chemical methods. Wide differences occur in the deposits of surface wax and cuticular membrane even within species of one genus. The relative proportions of four hydroxy-fatty acids in the cutin acids of plants of the families are assessed and the value of cutin analysis as a taxonomic criterion is discussed.  相似文献   

2.
The cuticular wax and cutin components of the cuticular membranes isolated from the leaves of two spinach cultivars have been determined. The membranes contain about 0·007 mg/cm2 of cuticular wax which comprises monobasic acids (C16–C38) with hexadecanoic as the major component. The amounts of cutin are comparable with those of cuticular wax and the monomeric constituents are predominantly C18 epoxy compounds. The most abundant monomer is 9,10-epoxy-18-hydroxyoctadecanoic acid (up to 63%) together with substantial amounts of 9,10,18-trihydroxyoctadecanoic acid (up to 22%). Also present are 9,10-epoxyoctadecane-1,18-dioic acid (6–7%) dihydroxyhexadecanoic acid (3–4%) and ω-hydroxymonobasic and fatty acid fractions. The tentative identification of two minor components, 18-hydroxyoxooctadecanoic and 9,10-epoxy-12,18-dihydroxyoctadecanoic acids, is also made. Although spinach membranes have a delicate structure their cutin composition is essentially similar to that of much more substantial membranes.  相似文献   

3.
Cuticle thickness was measured, either by direct microscopic examination or as weight per unit area, for the astomatous cuticle from the upper leaf surface of nine species and from tomato fruit. Thickness ranged from 1.4 μm for peach leaf cuticle to 10.8 μm for oleander leaf cuticle, and the weight from 0.19 mg/cm2 to 1.26 mg/cm2, respectively. Cuticles were isolated by the pectinase method and permeability to 2,4-D was determined. There was no correlation between cuticle thickness and penetration of 2,4-D, either for non-dewaxed cuticles or after chloroform extraction of waxes. Penetration of 2,4-D was increased following wax removal, but there was no correlation between wax content and the magnitude of the increase. It is suggested that cutin and wax qualitative composition are probably more important than thickness in determining relative permeability of cuticle from different plant species to 2,4-D.  相似文献   

4.
Pepper (Capsicum spp.) fruits are covered by a relatively thick coating of cuticle that limits fruit water loss, a trait previously associated with maintenance of postharvest fruit quality during commercial marketing. To shed light on the chemical‐compositional diversity of cuticles in pepper, the fruit cuticles from 50 diverse pepper genotypes from a world collection were screened for both wax and cutin monomer amount and composition. These same genotypes were also screened for fruit water loss rate and this was tested for associations with cuticle composition. Our results revealed an unexpectedly large amount of variation for the fruit cuticle lipids, with a more than 14‐fold range for total wax amounts and a more than 16‐fold range for cutin monomer amounts between the most extreme accessions. Within the major wax constituents fatty acids varied from 1 to 46%, primary alcohols from 2 to 19%, n‐alkanes from 13 to 74% and triterpenoids and sterols from 10 to 77%. Within the cutin monomers, total hexadecanoic acids ranged from 54 to 87%, total octadecanoic acids ranged from 10 to 38% and coumaric acids ranged from 0.2 to 8% of the total. We also observed considerable differences in water loss among the accessions, and unique correlations between water loss and cuticle constituents. The resources described here will be valuable for future studies of the physiological function of fruit cuticle, for the identification of genes and QTLs associated with fruit cuticle synthesis in pepper fruit, and as a starting point for breeding improved fruit quality in pepper.  相似文献   

5.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

6.
Composition of the cuticle of developing sweet cherry fruit   总被引:2,自引:0,他引:2  
The composition of wax and cutin from developing sweet cherry (Prunus avium) fruit was studied by GC-MS between 22 and 85 days after full bloom (DAFB). In this and our previous study, fruit mass and surface area increased in a sigmoidal pattern with time, but mass of the cuticular membrane (CM) per unit fruit surface area decreased. On a whole fruit basis, mass of CM increased up to 36 DAFB and remained constant thereafter. At maturity, triterpenes, alkanes and alcohols accounted for 75.6%, 19.1% and 1.2% of total wax, respectively. The most abundant constituents were the triterpenes ursolic (60.0%) and oleanolic acid (7.5%), the alkanes nonacosane (13.0%) and heptacosane (3.0%), and the secondary alcohol nonacosan-10-ol (1.1%). In developing fruit triterpenes per unit area decreased, but alkanes and alcohols remained essentially constant. The cutin fraction of mature fruit consisted of mostly C16 (69.5%) and, to a lower extent, C18 monomers (19.4%) comprising alkanoic, omega-hydroxyacids, alpha,omega-dicarboxylic and midchain hydroxylated acids. The most abundant constituents were 9(10),16-dihydroxy-hexadecanoic acid (53.6%) and 9,10,18-trihydroxy-octadecanoic acid (7.8%). Amounts of C16 and C18 monomers per unit area decreased in developing fruit, but remained approximately constant on a whole fruit basis. Within both classes of monomers, opposing changes occurred. Amounts of hexadecandioic, 16-hydroxy-hexadecanoic, 9(10)-hydroxy-hexadecane-1,16-dioic and 9,10-epoxy-octadecane-1,18-dioic acids increased, but 9,10,18-trihydroxy-octadecanoic and 9,10,18-trihydroxy-octadecenoic acids decreased. There were no qualitative and minor quantitative differences in wax and cutin composition between cultivars at maturity. Our data indicate that deposition of some constituents of wax and cutin ceased during early fruit development.  相似文献   

7.
The ontogenetic and seasonal development of wax composition and cuticular transpiration of sun and shade leaves of ivy (Hedera helix L.) was analysed by investigating leaves varying in age between 4 and 202 d. It was discovered that the total amount of solvent-extractable wax was composed of two distinct fractions, separable by column chromatography: (i) a less polar or apolar monomeric wax fraction consisting of the typical linear, long-chain aliphatics usually described as cuticular wax components and (ii) a polar, oligomeric wax fraction consisting of primary alcohols and acids mostly esterified to C12-, C14- and C16-ω-hydroxyfatty acids. The apolar wax fraction, which could be analysed directly by gas chromatography coupled with mass spectrometry (GC-MS), exhibited pronounced seasonal changes in composition. Wax amounts in the apolar fraction reached a maximum after about 30 d and gradually decreased again during the remaining period of the season investigated. In contrast, the polar wax fraction, which was analysable by GC-MS only after transesterification, rapidly increased early in the season, reaching a plateau after 40 d, and then remained constant during the rest of the season. Thus, total amounts of solvent-extractable cuticular waxes, which can be determined gravimetrically, will only be detected by GC-MS after fractionation and transesterification, a methodological approach rarely applied in the past in cuticular wax analysis. Additionally, investigation of the cutin polymer matrix after depolymerisation through transesterification, revealed that only those primary alcohols and acids forming an essential part of the apolar and the polar wax fractions were esterified during the investigated season and incorporated in increasing amounts into the cutin polymer matrix (matrix-bound wax fraction). Thus, it can be concluded that a complete analysis of cuticular wax of ivy and its seasonal development can only be achieved if all the relevant fractions (i) the less polar or apolar, (ii) the polar and (iii) the wax fraction bound to the cutin polymer matrix are investigated. Cuticular transpiration rapidly decreased within the first 30 d and essentially remained constant during the rest of the season. Thus, changes in cuticular water permeability were closely correlated with the most prominent changes in wax amounts and composition occurring during the first 30 d of ontogenetic leaf development. However, during the remainder of the year, up to 202 d, cuticular transport properties remained constant, although significant quantitative and qualitative changes in cuticular wax composition continued to occur. Thus, our study clearly demonstrated that there will be no simple relationship between chemical composition of cuticular waxes and transport properties of isolated ivy leaf cuticles. Received: 2 March 1998 / Accepted: 26 June 1998  相似文献   

8.
The effects of chlorine substitution on the movement of phenoxyaceticand benzoic acids through enzymatically-isolated cuticles ofLycopersicon fruits were determined by following the transferof each acid containing 14C from a donor to a receiver solution.This cuticle is characterized by an isotropic cutin matrix,within which patches of birefringent cuticular waxes are foundnear the outer surface. The outer, morphological surface isrelatively smooth while at the junction with the outer wallsof the epidermal cells there is extensive cuticular developmentextending down between the anticlinal walls. The epicuticularwax appears as a soft sheet-like covering of which the surfaceis relatively featureless. Chlorination of phenoxyacetic acid results in an enhanced transferacross the isolated cuticle. The order was 2,4,5- and 2,4,6-trichlorophenoxyacetic> 2,4- and 3,5-dichlorophenoxyacetic > 2-chlorophenoxyacetic> phenoxyacetic acid. Removal of the epicuticular wax resultedin greater permeability for all compounds; transfer of the morepolar acids was favoured. In contrast, chlorination of benzoicacid decreases passage through the cuticle; the rate is highestfor benzoic acid followed in descending order by 2-chlorobenzoic,2,4- and 2,5-dichlorobenzoic and 2,3,6-trichlorobenzoic acid.Chlorination also depresses the passage of both phenoxyaceticand benzoic acid through a dialysis membrane. The effects ofchlorination on the lipid solubility of both series of compoundsare discussed in relation to differences in transfer acrossthe cuticle.  相似文献   

9.
The cuticle covers the aerial epidermis of land plants and plays a primary role in water regulation and protection from external stresses. Remarkable species diversity in the structure and composition of its components, cutin and wax, have been catalogued, but few functional or genetic correlations have emerged. Tomato (Solanum lycopersicum) is part of a complex of closely related wild species endemic to the northern Andes and the Galapagos Islands (Solanum Sect. Lycopersicon). Although sharing an ancestor <7 million years ago, these species are found in diverse environments and are subject to unique selective pressures. Furthermore, they are genetically tractable, since they can be crossed with S. lycopersicum, which has a sequenced genome. With the aim of evaluating the relationships between evolution, structure and function of the cuticle, we characterized the morphological and chemical diversity of fruit cuticles of seven species from Solanum Sect. Lycopersicon. Striking differences in cuticular architecture and quantities of cutin and waxes were observed, with the wax coverage of wild species exceeding that of S. lycopersicum by up to seven fold. Wax composition varied in the occurrence of wax esters and triterpenoid isomers. Using a Solanum habrochaites introgression line population, we mapped triterpenoid differences to a genomic region that includes two S. lycopersicum triterpene synthases. Based on known metabolic pathways for acyl wax compounds, hypotheses are discussed to explain the appearance of wax esters with atypical chain lengths. These results establish a model system for understanding the ecological and evolutionary functional genomics of plant cuticles.  相似文献   

10.
Plant cuticles provide a protective layer that has to be penetrated by fungal pathogens. Evidence is provided for a differential and sequential induction of two classes of cutinolytic esterases by Alternaria brassicicola. Serine esterases with cutinolytic activities were expressed by conidia germinating on host surfaces. The enzymes were not induced by surface wax or cutin monomers. They were only expressed during initial (24 h) contact of conidia with cutin on host surfaces freed from wax, and with cutin in aqueous suspensions. In contrast, contact with cutin had no immediate effect on the expression of CUTAB1, a gene encoding two cutinase isozymes with crucial functions in the saprophytic utilization of cutin. Presence of a cutin monomer or prolonged exposure to cutin was required for the induction of CUTAB1 expression. The differential induction of cutinolytic esterases indicates a sequential recognition of cutin as a barrier to be penetrated and to be utilized as a carbon source in saprophytic stages.  相似文献   

11.
Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle   总被引:1,自引:0,他引:1  
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.  相似文献   

12.
13.
14.
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato ( Solanum lycopersicum ) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 ( cd1 ), cd2 and cd3 , the fruit cuticles of which have a dramatic (95–98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.  相似文献   

15.
The surface of peach (Prunus persica 'Calrico') is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.  相似文献   

16.
倪郁  郭彦军 《遗传》2008,30(5):561-567
超长链脂肪酸(very long chain fatty acids, VLCFAs)在生物体中具有广泛的生理功能, 它们参与种子甘油酯、生物膜膜脂及鞘脂的合成, 并为角质层蜡质的生物合成提供前体物质。角质层是覆盖在植物地上部分最表层的保护层, 由角质和蜡质组成, 其中蜡质又分为角质层表皮蜡和内部蜡, 在植物生长发育、适应外界环境方面起重要作用。VLCFAs的合成由脂肪酰-CoA延长酶催化, 该酶是由b-酮脂酰-CoA合酶、b-酮脂酰-CoA还原酶、b-羟脂酰-CoA脱水酶和反式烯脂酰-CoA还原酶组成的多酶体系。合成后的VLCFAs通过脱羰基与酰基还原作用进入角质层蜡质合成途径, 形成各种蜡质组分。文章就VLCFAs及角质层蜡质合成代谢途径中相关酶基因研究进展方面做了综述, 并对植物蜡质基因研究中存在的问题提出一些看法。  相似文献   

17.
The levels of deposition of the waxy and cutin components of the cuticles of the mature leaves and developing fruits of the Merton Worcester and Cox's Orange Pippin varieties of apple over a period of 4 months are reported. The waxy materials on the leaves remain approximately constant at 20 μg./cm.2, and the cutin at about 100 μg./cm.2 of surface. The waxy and cutin deposits on the fruits increase markedly during the period of development, the wax and oil present on the surface and embedded within the cutin rising to 500 μg./cm.2 and the cutin to a little under 1000 μg./cm.2 of surface. Phenolic and acidic substances in the cuticles of the fruits are determined, and the possibility of their occurrence in surface deposits on the leaves is discussed.
An examination is made of the effect of nutrient deficiency upon the formation of waxy and phenolic substances in the leaves. Nitrogen deficiency in Worcester Pearmain leaves leads to a reduced deposition of waxy materials, and nitrogen, phosphorus and potassium deficiency results in higher contents of phenolic compounds. The separation and nature of the waxy covering on leaves, the effect of environmental conditions on its formation, and its importance in relation to the application of crop protection chemicals are discussed.  相似文献   

18.
Quantitative comparisons were made of the components of the cuticles of leaves of plantain, fat hen, dandelion, dock, chickweed and forget-me-not. Hydrocarbons and triterpenoids were prominent in the surface wax of plantain; esters and alcohols in the other surface waxes. Polar compounds predominated in the cuticular waxes. Cuticle development in plantain, dandelion and chickweed was similar, but the cutins differed in the relative proportions of hydroxy-fatty and fatty acid components. Sorption of 2,4-D by the cuticular membrane was inversely related to the amount of cuticular wax. Hydrocarbons and an aldehyde fraction isolated from surface wax most effectively reduced the penetration of water in a model system.  相似文献   

19.
The cuticular membrane (CM) of Agave americana with the adheringcellin wall was isolated with ammonium oxalate-oxalic acid solution,air-dried and dry-embedded without fixation. After KMnO4 staining,electron translucent lamellae are visible in the cuticle properand cuticular layer. The fine structure of the opaque lamellaein the cuticle proper is more complex than previously observedin situ. It is more clearly observed in CM isolated at 40 °Cthan in those isolated at 100 °C, or in air-dried tissue,subsequently remoistened, fixed and dehydrated in acetone. Although extraction of CM with hot organic solvents removessubstantial quantities of wax (mainly long chain alcohols andfatty acids), not all of the electron-lucent lamellae disappearcompletely. Strong sulphuric acid dissolves the cellin wallsadhering to the CM and strongly diminishes the iodine/potassiumiodide-sulphuric acid-silver proteinate staining reactivityof the CM, probably due to the marked reduction in epoxide contentof the cutin. The acid does not completely remove the carbohydratereticulum included in the cuticular layer. In sodium methoxide solution the CM is decutinized from thecellin wall side where the carbohydrate fibrillae included inthe interior cuticular layer become completely exposed. On theoutside, the lamellate cuticle proper is also lost. Major cutinmonomers solubilized are 9, 10-epoxy-18-hydroxyoctadecanoicand 9, 10, 18-trihy-droxyoctadecanoic acids. Partial decutinizationof the CM with methanolic HC1 produces similar but less drasticeffects than methoxide apparently because the outer surfaceis protected by an artificial layer of lipids originating fromdepolymerized cutin. Agave americana, leaf, cuticular membrane, isolation of cuticular membranes, ultrahistochemistry, cutin, wax, epoxide groups in biopolymers  相似文献   

20.
Although the surface waxes from Arabidopsis thaliana leaves and stems have been thoroughly characterized, the monomer composition of the polyesters of the cuticular membrane has not been analyzed. Delipidated Arabidopsis leaves or stems, when depolymerized under conditions to cleave polyesters, produced typical omega-hydroxy fatty acid cutin monomers such as 16-hydroxy-palmitate, 10,16-dihydroxy-palmitate and 18-hydroxy-9,10-epoxy-stearate. However, the major monomer was octadeca-cis-6, cis-9-diene-1,18-dioate, with lesser amounts of octadec-cis-9-ene-1,18-dioate and hexadeca-1,16-dioate. These dicarboxylates were found predominantly in epidermal peels from Arabidopsis stems and are therefore likely to be associated with the cuticular membrane. They were also found in analyses of canola leaves but were absent in tomato and apple fruit cutins. In the fad2-1 mutant line of Arabidopsis, which has reduced levels of linoleate and linolenate and elevated oleate in cytosolic phospholipids, the amount of octadeca-cis-6, cis-9-diene-1,18-dioate was 50% reduced, with a concomitant increase in octadec-cis-9-ene-1,18-dioate. In a fatb-ko line of Arabidopsis, where the availability of cytosolic palmitate is impaired, there was an 80% loss of C16 monomers and a compensating increase in C18 monomers. The presence of substantial amounts of dicarboxylates in cuticular membranes is unexpected. High amounts of aliphatic dicarboxylates are usually considered as an indicator of suberin, and are reported only as very minor components of cutin. The high level of polyunsaturation is also unusual in cuticles; saturated fatty acid monomers usually predominate, with lesser amounts of monounsaturates. These novel findings for Arabidopsis demonstrate that a broad range of monomer compositions are possible for polyesters of the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号