首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed to address the controversy concerning human IgE biosynthesis in vitro induced by stimulation with pokeweed mitogen (PWM) or other agents. The controversy has focused on the specificity of reagents employed for quantitatively determining human IgE in culture supernatant fluids. Specifically, questions have been raised as to whether certain anti-human IgE antibody reagents possess anti-idiotypic reactivities, thereby resulting in reactions with Fab determinants of polyclonal immunoglobulins which would yield false-positive readings of IgE protein levels. We present a detailed analysis confirming that the goat anti-human IgE antibody designated GAHE(PS), which was initially isolated by affinity chromatography with the same IgE(PS) myeloma protein used for immunization, binds poorly, if at all, with IgG, IgA, or IgM immunoglobulins, even at excessive concentrations (100 micrograms/ml). Moreover, GAHE(PS) displayed no reactivity with Fab fragments of IgG or free L-chains prepared from pooled polyclonal IgG isolated from Cohn fraction II. A second GAHE reagent was prepared by purification by affinity chromatography on a second, completely unrelated IgE myeloma protein (DZA), which differed from IgE(PS) in light chain class, thereby resulting in a reagent, designated GAHE(DZA), which was completely devoid of any possible reactivity with L-chain or idiotypic determinants affiliated with IgE(PS). By utilizing both reagents, the studies presented here confirmed that PWM-stimulated human lymphoid cell cultures synthesize increased quantities of IgE, which can be detected in comparable amounts by both GAHE(DZA) and GAHE(PS) in supernatant fluids from such cultures. Because incorporation of the reversible protein synthesis inhibitor, cycloheximide, totally abolished the PWM-induced increases in IgE levels in such cultures, these results verify that such increases reflect de novo synthesis of human IgE as a result of PWM stimulation in vitro.  相似文献   

2.
3.
Cell surface receptors for IgE were isolated from detergent lysates of iodinated, IgE-saturated, rat basophilic leukemia cells by precipitation with anti-IgE antibodies followed by chromatography at acid pH. The isolated material showed a single 125I-band (m.w. approximately 58,000) on gel electrophoresis in sodium dodecyl sulfate and was used to immunize a rabbit. The resulting anti-serum was reacted with lysates of surface iodinated mouse or rat tumor mast cells. Analysis of the precipitates on (10%) gel electrophoresis revealed one major peak comprising greater than 80% of the detectable counts and having an estimated m.w. of approximately 58,000. The antiserum reacted with detergent-solubilized and cell-bound receptors in the presence or absence of excess IgE; it also inhibited the binding of 125I-IgE. Cultured mouse mastocytoma cells never exposed to IgE released 3H-serotonin when incubated with F(ab')2, but not Fab' fragments of the antiserum, which had been rigorously freed of IgE and anti-IgE. The release was inhibited in the presence of excess IgE, was Ca++ dependent, and equaled 80% of the maximum obtained with IgE and anti-IgE. We conclude that aggregation of the receptors for IgE provides the critical signals for cell activation.  相似文献   

4.
Our results support the hypothesis that binding the low affinity Fc epsilon R (Fc epsilon R-II, CD23) on IgE-secreting B cells, directly suppresses IgE production. IgE production from AF-10/U266 (a human IgE plasmacytoma) decreased upon incubation with anti-IgE mAb or IgE:anti-IgE immune complexes (IgE-IC). Synthesis was suppressed a maximum of 51% with 10 micrograms/ml of IgE-IC after a 24-h incubation. Spontaneous in vitro IgE synthesis from the B cells of highly atopic individuals was also inhibited in a similar fashion. This effect was isotype specific as IgA or IgG immune complexes did not alter IgE production from AF-10 nor did IgE-IC affect IgA or IgG synthesis from lymphoblastoid cell lines making IgG (GM1500 and RPMI 8866) or IgA (GM1056). U266/AF-10 cells displayed both membrane IgE (greater than 90%) and Fc epsilon R-II (23%). To evaluate the role of these membrane proteins in the observed suppression of IgE synthesis, we treated U266/AF-10 cells with IgE-IC that bound Fc epsilon R-II but could not bind membrane IgE, as the mAb used was directed against an idiotypic determinant on the myeloma IgE (PS) used to make the IgE-IC. Suppression was maximal (greater than 50%) with these complexes at 0.1 micrograms/ml and at a 1/1 ratio of mAb anti-IgE to human myeloma IgE. When IgE-IC were used that were constructed with heat denatured IgE or F(ab')2 fragments of IgE, suppression was abrogated indicating IgE-Fc epsilon R binding was required. Neither PS IgE nor mAb 5.1 (the components of IgE-IC) alone affected IgE synthesis. Furthermore, a mAb binding directly to CD23 suppressed IgE synthesis from AF-10 up to 60%. Using limiting dilution analysis, we determined that IgE production per AF-10 cell was constant (0.9 pg/cell/24 h), independent of cell density and cells incubated with IgE-IC were uniformly suppressed. To clarify the mechanism of IgE-IC-induced suppression on AF-10 cells, we assessed both the proliferative rate and cell cycle distribution upon incubation with IgE-IC. There was no correlation between IgE production and [3H]TdR incorporation by AF-10 cells incubated with IgE-IC or anti-CD23 mAb. The distribution of cells within the cell cycle was unaffected by these treatments, with 60% of the cells in G1. These results define a direct role for the Fc epsilon R-II on B cells in the regulation of ongoing IgE synthesis.  相似文献   

5.
We have reexamined the ability of anti-human IgG antibodies to induce histamine release from human basophils. A panel of purified murine mAbs with International Union of Immunological Societies-documented specificity for each of the four subclasses of human IgG was used. Of the 24 allergic subjects studied, the basophils of 75% (18/24) released greater than 10% histamine to one or more anti-IgG1-4 mAb, whereas none of the 13 nonatopic donor's basophils released histamine after stimulation with optimal amounts of anti-IgG mAb. The basophils of 85% (11/13) of the nonatopic donors did respond to anti-IgE challenge, as did 92% (22/24) of the atopic donor cells. Histamine release was induced most frequently by anti-IgG3, and 10/18 anti-IgG responder cells released histamine with mAb specific for two or more different subclass specificities. The rank order for induction of histamine release was anti-IgG3 greater than anti-IgG2 greater than IgG1 greater than anti-IgG4. As in our previous study using polyclonal anti-IgG, 100- to 300-micrograms/ml quantities of the anti-IgG mAb were required for maximal histamine release, about 1000-fold higher than those for comparable release with anti-human IgE. Specificity studies using both immunoassays and inhibition studies with IgE myeloma protein indicated that anti-IgG induced histamine release was not caused by cross-reactivity with IgE. Ig receptors were opened by lactic acid treatment so that the cells could be passively sensitized. Neither IgE myeloma nor IgG myeloma (up to 15 mg/ml) proteins could restore the response to anti-IgG mAb. However, sera from individuals with leukocytes that released histamine upon challenge with anti-IgG mAb could passively sensitize acid-treated leukocytes from both anti-IgG responder and nonresponder donors for an anti-IgG response. The only anti-IgG mAb that induced release from these passively sensitized cells were those to which the serum donor was responsive. Sera from non-IgG responders could not restore an anti-IgG response. These data led to the hypothesis that the IgG specific mAb were binding to IgG-IgE complexes that were attached to the basophil through IgE bound to the IgE receptor. This was shown to be correct because passive sensitization to anti-IgG could be blocked by previous exposure of the basophils to IgE. We conclude that anti-IgG-induced release occurs as a result of binding to IgG anti-IgE antibodies and cross-linking of the IgE receptors on basophils.  相似文献   

6.
Summary Pollen from birch trees (Betula pendula) was fixed in paraformaldehyde with or without the addition of 0.5% cetylpyridinium chloride, dehydrated and embedded in Lowicryl K4M in the cold. Ultrathin sections were incubated using the following sequence of antibodies and antisera: IgE-containing serum from an atopic human individual allergic to birch pollen allergens, rabbit anti-human IgE antibodies, and colloidal gold-labelled goat anti-rabbit antibodies. Controls were performed by replacing the specific human antiserum by serum from an atopic person with a similar level of IgE antibodies directed against allergens other than birch pollen allergens, or by omitting the human antiserum or the anti-IgE antibody or both. In test experiments, there was a dense specific labelling of the exine and the cytoplasmic matrix of the pollen grain. There was moderate labelling of the apertural regions (poral plugs). There was no labelling of the intine. In pollen grains fixed with the addition of cetylpyridinium chloride, an electron-dense surface coat was precipitated on the outside of the pollen wall. This surface material also remained completely unlabelled.  相似文献   

7.
In vitro binding of an IgE protein to human platelets   总被引:1,自引:0,他引:1  
Bronchoconstriction in extrinsic asthma is initiated by mediators released from IgE-sensitized leukocytes after contact with polyvalent antigen. Because platelets also contain soluble mediators that can cause bronchoconstriction, platelet activation and release of the contents of platelet granules may play a role in IgE-mediated responses under some circumstances. We therefore sought to determine if platelets are capable of binding IgE and if cross-linking this cell-bound IgE initiates secretion of platelet granule contents. Platelets from 10 normal donors were studied by using automated fluorescence analysis and fluorescence microscopy. We detected binding of a purified myeloma IgE protein to 24.1 +/- 9.6% (mean +/- 2 SD) of the gel-filtered platelets from these normal individuals. Although we could detect the binding of IgE and anti-IgE to a minority of cells, every normal individual had a population of platelets that bound IgE. The amount of IgE that bound to normal platelets appeared to be distributed heterogeneously among the IgE-positive platelet population. Platelets from two individuals with type II Glanzmann's thrombasthenia bound normal amounts of heat-aggregated IgG, but less than 3% of the platelets bound detectable IgE. Moreover, a combination of monoclonal antibodies to glycoproteins IIb and IIIa inhibited the binding of the IgE protein to normal platelets but did not affect the binding of aggregated IgG. Thus, the binding of IgE to human platelets appeared to require the presence of the glycoprotein IIb-IIIa complex. Binding of monomeric IgE to platelets, by itself, did not initiate either platelet aggregation or release of 14C-serotonin. However, both aggregation and secretion of serotonin followed the addition of anti-IgE to IgE-sensitized platelets. These studies indicate that human platelets can bind an IgE myeloma protein in vitro and that cross-linking of surface-bound IgE with anti-IgE initiates aggregation and secretion. If platelets have a similar capacity to bind normal IgE in vivo, it is possible that platelets may participate directly in several atopic or inflammatory disorders in man mediated by this class of antibody.  相似文献   

8.
Peripheral blood T lymphocytes from nonatopic control donors, asymptomatic atopic donors, and patients with moderate to severe atopic dermatitis were analyzed for Fc receptors for IgE (T epsilon cells) and IgG (T gamma cells) by rosette assays and were characterized with monoclonal antibodies. The T cells were reacted first with monoclonal antibodies, followed by fluoresceinated F(ab')2 goat antimouse Ig; they were then rosetted, and subsequently the rosetting cells were examined for immunofluorescence. Seven nonatopic control donors had less than 0.1% T epsilon cells and a mean +/- SD of 10.5% +/- 4.1 T gamma cells. Seven asymptomatic atopic donors with low IgE levels (2 to 233 IU/ml) varied from less than 0.1 to 1.3% T epsilon cells and 7.2% +/- 3.7 T gamma cells. Six of seven patients with moderate to severe atopic dermatitis and IgE levels of 1339 to 24,261 IU/ml had less than 0.1% T epsilon cells and significantly fewer T gamma cells (3.1% +/- 2.7, p less than 0.01) than the nonatopic control donors and the atopic donors in remission. Both T epsilon and T gamma cells reacted with the pan-T cell antibody Lyt-3 (anti-sheep red cell receptor) but not with antibodies OKT3, OKT4, or OKT6. Subpopulations of both T epsilon and T gamma cells reacted with antibodies OKT8 and the antimonocyte antibody OKM1. The OKM1+ cells did not appear to be monocytes, however, because the T cells did not react with another antimonocyte antibody, BRL.2, and were negative for nonspecific esterase activity. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Polyclonal anti-human IgE reagents were earlier shown to contain variable amounts of nonisotype-specific antibodies depending on the strategy used for their preparation. The presence of these antibodies in two commercial anti-IgE reagents was demonstrated in this work by (a) their binding to human Ig-surface-positive lymphoblastoid cells specifically selected by one of the polyclonal anti-human IgE reagents and (b) their binding to the non-IgE immunoglobulins secreted by those lymphoblastoid cells. Peripheral blood B lymphocytes from two normal and two atopic patients were immortalized with Epstein-Barr virus (EBV) and then selected for cells that rosette with anti-IgE-coated erythrocytes. Selection was repeated four times and cells were then cloned. The cloned cells formed rosettes and their supernatants agglutinated erythrocytes coated with rabbit anti-IgE. The immunoglobulins of these clones were positive in an ELISA for IgE, using two different polyclonal anti-human IgE reagents. They were shown, however, to be 19 S IgMs. This discrepancy was due apparently to substantial contamination of anti-non-IgE-isotype-specific antibodies in the polyclonal anti-IgE reagents used both in the selection of cells and in the ELISA. The human monoclonal B-cell lines which were applied here as targets amplified the non-IgE-isotype specific antibody contamination present in the polyclonal anti-human IgE reagents. Because of the normally very low frequency of IgE-positive cells, the use of polyclonal anti-IgE reagents to detect these cells has to be carefully evaluated.  相似文献   

10.
The present study investigated whether the sites on the FC region of the IgE molecule, recognized by different anti-IgE monoclonal antibodies (mAb), are identical to those recognized by the Fc receptor (Fc epsilon R). The anti-IgE mAb recognize different clusters of epitopes on the Fc region of IgE and could interfere to different degrees with the binding of IgE to mast cells and basophils, but still recognized cell-bound IgE. Analysis of the stoichiometry and affinity binding of 125I anti-IgE mAb Fab' to free IgE have revealed that anti-IgE mAb of one group (51.3) recognized three repetitive determinants on the IgE Fc portion, and another group (95.3) recognized only one determinant. When these stoichiometric studies were performed with cell-bound IgE, it was found that only one of the sites recognized by 51.3 mAb was involved in the Fc epsilon R binding site. On the other hand, the site recognized by 95.3 mAb was not the Fc epsilon R binding site. Such findings establish mAb 51.3 as a useful tool for isolating the IgE peptides involved in the binding site to the receptor.  相似文献   

11.

Background

Allergic asthma is an inflammatory disorder of the airways that results from inappropriate production of IgE against harmless, environmental antigens. Sequestration of free IgE using humanized IgG anti-IgE is an effective therapy for asthma and other atopic disorders. However, the status of free IgE in subjects who have naturally developed immune tolerance to inhaled antigens has not been well studied.

Methods

C57BL/6 mice were sensitized and challenged with ovalbumin (OVA) for 7 days to induce allergic airway disease (AAD) or 6 weeks to induce a state of local inhalational tolerance (LIT). Serum from AAD or LIT mice, diluted to achieve equivalent levels of total OVA-specific IgE, was used to sensitize rat basophil leukemia cells for allergen-mediated degranulation. Levels of degranulation were measured in relation to serum concentrations of free IgE and IgG anti-IgE/IgE immune complexes.

Results

Serum from AAD animals induced a greater degree of basophil degranulation than serum from LIT animals. These results correlated with higher levels of free IgE in AAD animals, whereas LIT mice demonstrated a significant increase in IgG anti-IgE/IgE immune complexes relative to their diseased counterparts.

Conclusions

Sequestration of free IgE by naturally occurring IgG anti-IgE may aid in the development of immune tolerance against inhaled allergens. The decrease in bioavailability of free IgE may, in turn, contribute to the overall reduction of asthma symptoms via a mechanism that mimics the therapeutic effects of humanized IgG anti-IgE.
  相似文献   

12.
Activation of the classical pathway of human complement by monoclonal IgE from patient DES was demonstrated by using IgE(DES) coupled to latex particles. This material depleted human serum of C1 and C4 hemolytic activities. In addition, C3bi was deposited in a calcium-dependent way onto the insolubilized IgE as shown by the agglutination of latex by conglutinin. The alternative pathway was also activated. These anticomplementary activities were dose and time dependent. Moreover, we confirmed that another monoclonal IgE, IgE(PS), activated the alternative pathway exclusively. Particular attention was paid to exclude contamination by other immunoglobulins or C-reactive protein, generation of artifacts due to the chemical coupling, and the presence of proteolytic enzymes in the IgE(DES) preparation. Moreover, evidence is also presented against the involvement of IgG or IgM anti-IgE autoantibodies that could activate the classical pathway after their binding to insolubilized IgE(DES). Although one cannot exclude the possibility that IgE(DES) or IgE(PS) are abnormal proteins, these findings suggest the existence of an isotypic or allotypic variation of IgE.  相似文献   

13.
Human lung macrophages obtained from surgical specimens spontaneously secreted a factor(s) (which we term macrophage factor) during 24-hr culture that induced calcium-dependent histamine release from human basophils and lung mast cells. Macrophage factor induced noncytotoxic histamine release from purified (85%) basophils. The kinetics of release were relatively slow and similar to that of anti-IgE. We performed a series of experiments to test the IgE dependence of macrophage factor-induced release. Preincubation of basophils with anti-IgE in calcium-free medium resulted in complete desensitization to macrophage factor-induced histamine release (i.e., when calcium and macrophage factor were added to the basophils, no histamine release occurred), and preincubation with macrophage factor in calcium-free medium resulted in partial desensitization to anti-IgE-induced histamine release. Pretreatment of basophils with pH 3.9 lactic acid buffer, which dissociates basophil IgE from its receptors, markedly reduced the capacity of basophils to release histamine in response to macrophage factor. Basophils that were incubated with IgE myeloma (but not with IgG) after lactic acid treatment partially or completely regained their capacity to release histamine in response to macrophage factor. Fluid-phase IgE myeloma (15 micrograms/ml) (but not IgG) inhibited basophil histamine release induced by two macrophage-derived supernatants, whereas IgE myeloma (200 micrograms/ml) did not inhibit release due to other supernatants. IgE-affinity columns removed the histamine-releasing activity of five macrophage-derived supernatants, and IgG-affinity columns had similar effects. However, neither affinity column removed the histamine-releasing activity of three other macrophage-derived supernatants. On Sephadex G-75 chromatography, nearly all of the histamine-releasing activity migrated as single peak with an apparent m.w. of 18,000. These results suggest that, although macrophage factor are heterogeneous, they are related, as they are a IgE-dependent factors that induce histamine release by interacting with cell surface IgE. These macrophage factors may be responsible for stimulation of basophil/mast cell mediator release in chronic allergic reactions.  相似文献   

14.

Background

Airway wall remodeling in allergic asthma is reduced after treatment with humanized anti-IgE-antibodies. We reported earlier that purified IgE, without the presence of allergens, is sufficient to induce airway wall remodeling due to airway smooth muscle cell (ASMC) activity deposing extracellular matrix.

Objective

We postulate that IgE contained in serum of allergic asthma patients, in the absence of allergens, stimulates ASMC remodeling activities and can be prevented by anti-IgE antibodies.

Methods

Isolated human ASMC were exposed to serum obtained from: (i) healthy controls, or patients with (ii) allergic asthma, (iii) non-allergic asthma, and (iv) atopic non-asthma patients. Proliferation and the deposition of collagens and fibronectin were determined after 3 and 5 days.

Results

Serum from patients with allergies significantly stimulated: (i) ASMC proliferation, (ii) deposition of collagen type-I (48 hours) and (iii) of fibronectin (24 hours). One hour pre-incubation with Omalizumab prevented these three effects of allergic serum, but had no significant effect on serum from healthy donors or non-allergic asthma patients. Interestingly, the addition of allergens did not further increase any of the IgE effects.

Conclusion and Clinical Relevance

Our data provides experimental evidence that the beneficial effect of Omalizumab on airway wall remodeling and improved lung function may be due to its direct action on IgE bound ASMC.  相似文献   

15.
IgE synthesis by the human myeloma line U-266 was enhanced 3- to 15-fold in the presence of supernatants from cultures of mononuclear cells (MNC). The enhancing activity was concentration-dependent and was derived from cells that were cultured in the absence of serum and received no in vitro stimulation by exogenous mitogens or lymphokines. T- and B-lymphocyte-enriched populations isolated from MNC were found to generate the enhancing activity, but no enhancing activity was produced by monocytes. MNC from atopic and nonatopic donors were equally effective as sources for this activity. The enhancement of IgE synthesis was proportionally greater than the effect of the activity on cell proliferation. Furthermore, this enhancement of IgE synthesis was demonstrated to be isotype-specific in that the factor(s) had no effect on IgM- and IgG-secreting cell lines. It is suggested that augmentation of IgE synthesis by B cells at a late stage of differentiation may be accomplished by lymphokines constantly present in the cells' milieu and that the U-266 model may be useful for testing putative IgE regulatory factors.  相似文献   

16.
Pokeweed mitogen (PWM) suppressed rhIL-4-induced IgE synthesis in a concentration-dependent manner. When rhIL-4 was present from Day 0, PWM added to cultures on Day 0 or 3 inhibited MNC IgE synthesis but not when it was added on Day 6 or later. The concentration of interferon-gamma (IFN-gamma) in MNC culture supernatants varied directly with the quantity of PWM added. Conversely, rhIL-4-stimulated MNC culture IgE concentrations varied inversely with the dose of PWM added and the IFN-gamma concentrations induced. The addition of a rabbit polyclonal neutralizing anti-human IFN-gamma antibody to rhIL-4 plus PWM-stimulated cultures partially or completely reversed PWM-induced inhibition of rhIL-4-induced IgE synthesis. PWM failed to inhibit rhIL-4-induced IgE synthesis by isolated B cells cocultured with monocytes and T cells from a clone unable to produce IFN-gamma message or protein. These findings are consistent with the postulate that PWM inhibits rhIL-4-induced IgE synthesis by inducing the production of IFN-gamma.  相似文献   

17.
Antigenic relationships between the low affinity Fc epsilon R present on murine B and T lymphocytes were studied. A rat mAb (B3B4) and two polyclonal antisera produced by immunizing with the murine B lymphocyte Fc epsilon RII were examined for their ability to inhibit binding of IgE to murine B or T lymphocytes, using an IgE-specific rosette assay. One polyclonal antiserum (goat-anti-mouse Fc epsilon R) inhibited binding of IgE to both B and T lymphocytes, whereas another polyclonal antiserum (rabbit-anti-mouse Fc epsilon R) and the rat mAb inhibited the binding of IgE to B lymphocytes but did not influence the binding of IgE to T lymphocytes. When lymphocytes were surface labeled with 125I, 49-kDa and 38-kDa IgE-binding proteins were immunoprecipitated from B lymphocyte lysates by B3B4 and from B and T lymphocyte lysates by the goat antiserum. Taken together, these results suggest that the Fc epsilon R present on murine B and T lymphocytes are structurally related receptors that share some, but not all, epitopes.  相似文献   

18.
Modulating the binding affinities to IgE or changing the FcγR binding properties of anti-IgE antibodies offers an opportunity to enhance the therapeutic potential of anti-IgE antibodies, but the influence of increased affinity to IgE or reduced Fc effector function on the pharmacological properties of anti-IgE therapies remains unclear. Our studies were designed to characterize the pharmacokinetics, pharmacodynamics and immune-complex distribution of two high-affinity anti-IgE monoclonal antibodies, high-affinity anti-IgE antibody (HAE) 1 and 2, in mice and monkeys. HAE1, also known as PRO98498, is structurally similar to omalizumab (Xolair®), a humanized anti-IgE IgG1 marketed for the treatment of asthma, but differs by 9 amino acid changes in the complementarity-determining region resulting in a 23-fold improvement in affinity. HAE2 is similar to HAE1, but its Fc region was altered to reduce binding to Fcγ receptors. As expected given the decreased binding to Fcγ receptors, systemic exposure to pre-formed HAE2:IgE complexes in mice was greater (six-fold) and distribution to the liver lower (four-fold) compared with HAE1:IgE complexes. In monkeys, systemic exposure to HAE1 was similar to that previously observed for omalizumab in this species, but required comparatively lower serum drug concentrations to suppress free IgE levels. HAE2 treatment resulted in greater exposure and greater increase of total IgE, relative to HAE1, because of decreased clearance of HAE2:IgE complexes. Overall, these data suggest that increased binding affinity to IgE may provide a more effective therapeutic for asthma patients, and that retaining FcγR binding of the anti-IgE antibody is important for elimination of anti-IgE:IgE complexes.  相似文献   

19.
The similarity between murine and rat IgE was examined in terms of their fixation to target cells and interaction with monospecific antibodies to rat epsilon-chain (anti-epsilon). Purified rat monoclonal IgE (IgEr) was found to block the fixation of murine reagin (IgEm) to mouse and rat skin and to rat basophilic leukemia (RBL) cells. The capacities of mouse reaginic serum (MRS), rat reaginic serum, and IgEr to inhibit the binding of radiolabeled 125I-IgEr to RBL cells were shown to be similar. These results suggest that the binding of IgE of either species occurs on the same or on adjacent receptor sites of mast cells and RBL cells. The antigenic cross-reactivity between IgEm and IgEr was established by depletion of the reaginic activity from MRS by treatment of MRS with anti-epsilon. The reaginic activity of MRS could be recovered by the addition of IgEr to anti-epsilon:IgEm complexes. From these findings it may be inferred that i) IgEm and IgEr share some antigenic determinants and ii) the regions of the immunoglobulins responsible for fixation to receptors on mast cells and RBL cells are identical or similar.  相似文献   

20.
Because of the lack of a cell line expressing on surface and secreting human IgE of known Ag specificity, the construction of a transfectoma line possessing such properties would be useful for studying the roles of surface IgE and the effects of anti-IgE antibodies on IgE-producing B cells. Toward this goal, the human genomic DNA segment encompassing the two exons encoding the membrane anchor peptide of epsilon-chain and their flanking regions was sequenced. Hybrid epsilon and kappa genomic DNA comprising the C regions of human epsilon- and kappa-chains and the H and L chain V regions of the murine mAb BAT123, which reacts with the gp120 envelope protein of HIV-1, were constructed. Mammalian expression vectors containing these fusion genes were used to transfect murine myeloma Sp2/0 cells, and transfectants stably expressing on surface and secreting into culture medium chimeric IgE were obtained. The chimeric IgE showed identical Ag-binding properties as the murine mAb BAT123. Acting in concert with the specific peptide Ag polyvalently coupled to a protein carrier, the chimeric antibody could induce histamine release from human blood basophils. These results demonstrate the potential utility of the transfectoma cells and the chimeric IgE in studying the roles of membrane-bound IgE and effects of anti-IgE antibodies on IgE-producing B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号