首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloperoxidase and eosinophil peroxidase use hydrogen peroxide to oxidize halides and thiocyanate to their respective hypohalous acids. Myeloperoxidase produces mainly hypochlorous acid and hypothiocyanite. Hypobromous acid and hypothiocyanite are the major products of eosinophil peroxidase. We have investigated the ability of myeloperoxidase to produce hypobromous acid in the presence of physiological concentrations of chloride and bromide. In accord with previous studies, between pH 5 and 7, myeloperoxidase converted about 90% of available hydrogen peroxide to hypochlorous acid and the remainder to hypobromous acid. Above pH 7, there was an abrupt rise in the yield of hypobromous acid. At pH 7.8, it accounted for 40% of the hydrogen peroxide. Bromide, at physiological concentrations, promoted a dramatic increase in bromination of human serum albumin catalyzed by myeloperoxidase. The level of 3-bromotyrosine increased to 16-fold greater than that for 3-chlorotyrosine. Chlorination of tyrosyl residues was not affected by bromide. With reagent hypohalous acids, bromination of tyrosyl residues was considerably more facile than chlorination. Hypochlorous acid promoted bromination to only a limited extent, which ruled out transhalogenation as a substantive route to 3-bromotyrosine. Chloramines and bromamines were also formed on albumin. Bromamines decayed much faster than chloramines and rapidly gave rise to protein carbonyls. We conclude that at physiological concentrations of chloride and bromide, hypobromous acid can be a major oxidant produced by myeloperoxidase. Its production in vivo will depend on pH and the concentration of bromide. Once produced, hypobromous acid will react with proteins to form bromamines, carbonyls, and brominated tyrosine residues. Consequently, 3-bromotyrosine should be considered as an oxidative product of myeloperoxidase and cannot be used as a specific biomarker for eosinophil peroxidase.  相似文献   

2.

Background

The aim of the study was to investigate inflammation during the birch pollen season in patients with rhinitis or asthma.

Methods

Subjects with birch pollen asthma (n = 7) or rhinitis (n = 9) and controls (n = 5) were studied before and during pollen seasons. Eosinophils (Eos), eosinophil cationic protein (ECP) and human neutrophil lipocalin were analysed.

Results

Allergic asthmatics had a larger decline in FEV1 after inhaling hypertonic saline than patients with rhinitis (median) (-7.0 vs.-0.4%, p = 0.02). The asthmatics had a lower sesonal PEFR than the rhinitis group. The seasonal increase in B-Eos was higher among patients with asthma (+0.17 × 109/L) and rhinitis (+0.27 × 109/L) than among controls (+0.01 × 109/L, p = 0.01). Allergic asthmatics and patients with rhinitis had a larger increase in sputum ECP (+2180 and +310 μg/L) than the controls (-146 μg/L, p = 0.02). No significant differences in inflammatory parameters were found between the two groups of allergic patients.

Conclusion

Patients with allergic asthma and rhinitis have the same degree of eosinophil inflammation. Despite this, only the asthmatic group experienced an impairment in lung function during the pollen season.  相似文献   

3.
We investigated correlations between ozone-induced increases in inflammatory markers in induced sputum and in bronchial lavage fluid. Sixteen volunteers with intermittent asthma participated in a placebo-controlled parallel study with two exposures. Six days before and 16 h after the first exposure to ozone (0.4 ppm during 2 h) sputum was induced with hypertonic saline. This resulted in a significant increase in the sputum levels of eosinophil cationic protein (ECP; 1.8-fold; p = .03), neutrophil elastase (5.0-fold; p = .005) and the total cell number (1.6-fold; p = .02). After 4 weeks, a second exposure was randomized for air or ozone. Six days before and 16 h after the second exposure a bronchial lavage was performed. ECP values in sputum and in bronchial lavage fluid obtained after ozone correlated significantly (Rs = .79; p = .04), as did interleukin-8 (IL-8) values (Rs = .86; p = .01), and the percentage eosinophils (Rs = .89; p = .007). Moreover, the ozone-induced changes in percentage eosinophils observed in sputum and lavage fluid were highly correlated (Rs = .93; p = .003). In conclusion, changes in eosinophils, IL-8, and ECP markers induced by ozone and measured in sputum reflect the inflammatory responses in the lower airways of asthmatics, and may provide a noninvasive tool in epidemiologic studies on air pollution and asthma.  相似文献   

4.
Eosinophil peroxidase and myeloperoxidase play an important role in the host defense. Both enzymes are present in bone marrow, synthesized by blood progenitor cells. This research investigated the kinetic properties of peroxidases under immunostimulation in guinea pig bone marrow. Results suggest that there are at least two myeloperoxidase isozymes and at least three eosinophil peroxidase isozymes in guinea pig bone marrow and that some of these isozymes are expressed upon immunostimulation.  相似文献   

5.
Eosinophil peroxidase (donor:hydrogen peroxide oxidoreductase, EC 1.11.1.7) was isolated from outdated human white blood cells. The purified enzyme has a molecular weight of 71000 +/- 1000. The enzyme is composed of two subunits, of Mr 58000 and 14000, in a 1:1 stoichiometry. Amino-acid analyses showed that eosinophil peroxidase has a high content of the amino acids arginine, leucine and aspartic acid. The millimolar absorbance coefficient of the Soret band at 412 nm of eosinophil peroxidase was determined. Three independent methods yield a value for epsilon 412nm of 110 +/- 4 mm-1 X cm-1. Purified eosinophil peroxidase showed a homogeneous high-spin EPR signal with rhombic symmetry (gx = 6.50; gy = 5.40; gz = 1.982) for the haem group. EPR spectroscopy of low-spin cyanide and azide derivatives of eosinophil peroxidase, lactoperoxidase, myeloperoxidase and catalase revealed that the haem-ligand structure of eosinophil peroxidase is closely related to lactoperoxidase, whereas that of myeloperoxidase shows great resemblance to catalase.  相似文献   

6.
Smoking may modify the inflammatory pattern of the asthmatic airways. Osteopontin (OPN) has been associated with inflammation and fibrosis. In asthma, sputum levels of OPN are elevated and have been related to the underlying severity and to mediators expressing remodeling and inflammation.To evaluate the levels of OPN in sputum supernatants of asthmatic patients and to investigate the possible role of smoking as well as associations with mediators and cells involved in the inflammatory and remodeling process.We studied 103 asthma patients (49 smokers) and 40 healthy subjects (20 smokers) who underwent lung function tests, bronchial hyperresponsiveness to methacholine, and sputum induction for cell count identification and measurement of OPN, TGF-β1, IL-8, IL-13 and ECP in sputum supernatants. The concentrations of all mediators were measured using enzyme immunoassays.OPN levels (pg/ml) were significantly higher in smoking asthmatics compared to non-smoking asthmatics, and both non-smoking and smoking controls [median (interquartile ranges) 1120 (651, 1817) vs. 197 (118, 341) vs. 50 (42, 70) vs. 102 (77, 110) pg/ml, respectively; p < 0.001]. Regression analysis provided significant associations between OPN and sputum neutrophils, IL-8 and TGF-β1, the most significant being the one with TGF-β1. These associations were present only in smoking asthmatics.Smoking habit significantly affects sputum OPN levels in asthma. The associations of OPN with sputum neutrophils, TGF-β1 and IL-8 in smoking asthmatics suggest a possible role for OPN in the neutrophilic inflammation and remodeling process in this phenotype of asthma.  相似文献   

7.
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A(-/-) allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/-) mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage.  相似文献   

8.
The specific detection of peroxidase activity in human granulocytes is essential to elucidate their role in innate immune responses, immune regulation, and inflammatory diseases. The halogenating activity of myeloperoxidase in neutrophils can be determined by the novel fluorescent probe aminophenyl fluorescein (APF). Thereby non-fluorescent APF is oxidized by HOCl to form fluorescein. We successfully verified that APF equally detects the hypobromous acid (HOBr)-producing activity of eosinophil granulocytes. This was revealed by three different approaches. First, we investigated the conversion of non-fluorescent APF into fluorescein by HOCl and HOBr by means of fluorescence and mass spectrometry approaches. Thereby comparable chemical mechanisms were observed for both acids. Furthermore in vitro kinetic studies were used to detect the halogenating activity of myeloperoxidase and eosinophil peroxidase by using APF. Here the dye well reflected the different substrate specificities of myeloperoxidase and eosinophil peroxidase regarding chloride and bromide. Finally, peroxidase activities were successfully detected in phorbol ester-stimulated neutrophils and eosinophils using flow cytometry. Thereby inhibitory studies confirmed the peroxidase-dependent oxidation of APF. To sum up, APF is a promising tool for further evaluation of the halogenating activity of peroxidases in both neutrophils and eosinophils.  相似文献   

9.
Oxidative and nitrosative events in asthma   总被引:10,自引:0,他引:10  
Asthma affects over 15 million individuals in the United States, with over 1.5 million emergency room visits, 500,000 hospitalizations, and 5500 deaths each year, many of which are children. Airway inflammation is the proximate cause of the recurrent episodes of airflow limitation in asthma. Research applying molecular biology, chemistry, and cell biology to human asthma and model systems of asthma over the last decade has revealed that numerous biologically active proinflammatory mediators lead to increased production of reactive oxygen species (ROS) and the gaseous molecule nitric oxide (NO). Persistently increased ROS and NO in asthma lead to reactive nitrogen species (RNS) formation and subsequent oxidation and nitration of proteins, which may cause alterations in protein function that are biologically relevant to airway injury/inflammation. Eosinophil peroxidase and myeloperoxidase, leukocyte-derived enzymes, amplify oxidative events and are another enzymatic source of NO-derived oxidants and nitrotyrosine formation in asthma. Concomitant with increased generation of oxidative and nitrosative molecules in asthma, loss of protective antioxidant defense, specifically superoxide dismutase (SOD), contributes to the overall toxic environment of the asthmatic airway. This review discusses the rapidly accruing data linking oxidative and nitrosative events as critical participants in the acute and chronic inflammation of asthmatic airways.  相似文献   

10.
Eosinophils use eosinophil peroxidase, hydrogen peroxide (H(2)O(2)), and bromide ion (Br(-)) to generate hypobromous acid (HOBr), a brominating intermediate. This potent oxidant may play a role in host defenses against invading parasites and eosinophil-mediated tissue damage. In this study, we explore the possibility that HOBr generated by eosinophil peroxidase might oxidize nucleic acids. When we exposed uracil, uridine, or deoxyuridine to reagent HOBr, each reaction mixture yielded a single major oxidation product that comigrated on reversed-phase HPLC with the corresponding authentic brominated pyrimidine. The eosinophil peroxidase-H(2)O(2)-Br(-) system also converted uracil into a single major oxidation product, and the yield was near-quantitative. Mass spectrometry, HPLC, UV--visible spectroscopy, and NMR spectroscopy identified the product as 5-bromouracil. Eosinophil peroxidase required H(2)O(2) and Br(-) to produce 5-bromouracil, implicating HOBr as an intermediate in the reaction. Primary and secondary bromamines also brominated uracil, suggesting that long-lived bromamines also might be physiologically relevant brominating intermediates. Human eosinophils used the eosinophil peroxidase-H(2)O(2)-Br(-) system to oxidize uracil. The product was identified as 5-bromouracil by mass spectrometry, HPLC, and UV--visible spectroscopy. Collectively, these results indicate that HOBr generated by eosinophil peroxidase oxidizes uracil to 5-bromouracil. Thymidine phosphorylase, a pyrimidine salvage enzyme, transforms 5-bromouracil to 5-bromodeoxyridine, a mutagenic analogue of thymidine. These findings raise the possibility that halogenated nucleobases generated by eosinophil peroxidase exert cytotoxic and mutagenic effects at eosinophil-rich sites of inflammation.  相似文献   

11.
Asthma is characterized by oxidative stress and inflammation of the airways. Although proinflammatory lipids are involved in asthma, therapies targeting them remain lacking. Ac-DWFKAFYDKVAEKFKEAFNH(2) (4F) is an apolipoprotein (apo)A-I mimetic that has been shown to preferentially bind oxidized lipids and improve HDL function. The objective of the present study was to determine the effects of 4F on oxidative stress, inflammation, and airway resistance in an established murine model of asthma. We show here that ovalbumin (OVA)-sensitization increased airway hyperresponsiveness, eosinophil recruitment, and collagen deposition in lungs of C57BL/6J mice by a mechanism that could be reduced by 4F. OVA sensitization induced marked increases in transforming growth factor (TGF)β-1, fibroblast specific protein (FSP)-1, anti-T15 autoantibody staining, and modest increases in 4-hydroxynonenal (4-HNE) Michael's adducts in lungs of OVA-sensitized mice. 4F decreased TGFβ-1, FSP-1, anti-T15 autoantibody, and 4-HNE adducts in the lungs of the OVA-sensitized mice. Eosinophil peroxidase (EPO) activity in bronchial alveolar lavage fluid (BALF), peripheral eosinophil counts, total IgE, and proinflammatory HDL (p-HDL) were all increased in OVA-sensitized mice. 4F decreased BALF EPO activity, eosinophil counts, total IgE, and p-HDL in these mice. These data indicate that 4F reduces pulmonary inflammation and airway resistance in an experimental murine model of asthma by decreasing oxidative stress.  相似文献   

12.
Myeloperoxidase activity was assayed by a chemiluminescence method, using a cypridina luciferin analog as a chemiluminescence probe, after extraction from peripheral human polymorphonuclear leukocytes. The chemiluminescence method was based on the detection of 1O2 generated by myeloperoxidase-catalyzed HOBr formation followed by the interaction of HOBr with H2O2 at pH 4.5. With this method, myeloperoxidase in less than 100 polymorphonuclear leukocytes could be detected and myeloperoxidase in 10(6) polymorphonuclear leukocytes would be calculated to be 14.4 pmol. Eosinophil extract, which contains eosinophil peroxidase, catalyzed 1O2 generation to a great extent, compared with the polymorphonuclear leukocyte extract at pH 4.5. Myeloperoxidase activity in extract of neutrophil fraction could be greatly influenced by eosinophil contamination.  相似文献   

13.
Using human myeloperoxidase cDNA as a probe, a chromosomal gene related to myeloperoxidase was isolated from a human gene library. Comparison of the amino acid sequence deduced from the nucleotide sequence of the cloned gene with that of human eosinophil peroxidase purified from buffy coats has indicated that the isolated gene is the chromosomal gene for human eosinophil peroxidase. Like human myeloperoxidase gene, human eosinophil peroxidase gene consists of 12 exons and 11 introns spanning about 12 kilobases. The gene can code for a protein of 715 amino acids with a calculated Mr of 81,036. The heavy chain and the light chain of eosinophil peroxidase were located on the COOH and NH2 terminus of the protein, respectively. The coding sequences of eosinophil peroxidase and myeloperoxidase show homologies of 72.4% at the nucleotide and 69.8% at the amino acid level, while little homology was found in the 5'-flanking region. Northern hybridization and S1 mapping analysis of RNA from human leukemic cells have indicated that the eosinophil peroxidase gene is expressed in the eosinophilic subline of human HL-60 cells but not in the neutrophilic subline or in parental HL-60 cells.  相似文献   

14.
Eosinophil granules contain several cationic proteins that mediate tissue damage in allergic disease. The present study examined the capacity and mechanisms by which these cationic proteins regulate activity of the alternative pathway of C. Eosinophil peroxidase and eosinophil cationic protein inhibited formation of cell-bound alternative pathway C3 convertase, causing 50% inhibition of lysis at about 0.19 and 0.75 microgram/10(7) cellular intermediates, respectively. Major basic protein inhibited alternative pathway C3 activity by only 19% at 1.5 micrograms/10(7) cellular intermediates. Eosinophil-derived neurotoxin had no activity on the alternative pathway. The eosinophil granule proteins were examined for the mechanism by which they inhibited alternative pathway activity. Eosinophil peroxidase and major basic protein inhibited fluid phase factor B consumption in a reaction mixture that also contained factors D and C3b, eosinophil-derived neurotoxin had no activity on factor B consumption, and eosinophil cationic protein consumed factor B in the absence of C3b and factor D. Both eosinophil cationic protein and eosinophil peroxidase enhanced the decay of preformed alternative pathway convertase. Lysis of EAC4b,3b cellular intermediates formed to contain a low surface amount of C3b was more inhibited than was lysis of cells formed with a standard amount of C3b on the surface. This suggests that these eosinophil proteins acted predominantly on C3b to regulate alternative pathway activity. We also found that none of the eosinophil granule cationic proteins had any effect on later events after the formation of the C3 convertase. We conclude that although eosinophil-derived neurotoxin (isoelectric pH value (pI) = 8.9) does not regulate alternative pathway activity, the more highly charged eosinophil granule cationic proteins--major basic protein (pI = 10.9), eosinophil cationic protein (pI = 10.8), and eosinophil peroxidase (pI = 10.8)--do share the capacity to regulate C activity and may exert this activity in vivo.  相似文献   

15.
Asthma is characterized by airway hyperresponsiveness (AHR) and inflammation, consisting predominantly of eosinophils within the airway lumen and walls. Eosinophil recruitment to the airways is mediated mainly by eotaxin and other chemokines that bind to the CC-chemokine receptor-3 (CCR3), which is highly expressed on eosinophils. This study assessed whether topical inhibition of CCR3 mRNA expression by phosphorothioate antisense oligodeoxynucleotides (AS-ODNs) modifies pulmonary eosinophilia and AHR in an antigen-induced allergic asthma model in Brown Norway (BN) rats. Results show that specific inhibition of CCR3 expression in the lungs by an AS-ODN (AS4) reduced total eosinophil infiltration and the percentage of eosinophils into the airways of ovalbumin challenged rats. Moreover, reduction in CCR3 mRNA levels was correlated with a decrease in CCR3 protein in lung tissue. In addition, AS4 treatment had no effect on circulating eosinophils or on eosinophils in the bone marrow. Finally, AHR was significantly decreased in AS4-treated rats when compared with rats treated with a mismatch AS-ODN. In conclusion, inhibition of the expression of CCR3 decreased pulmonary eosinophilia and reduced AHR after antigen challenge in rats. Topical inhibition of CCR3 expression, using an AS-ODN, could represent a novel approach for the treatment of asthma.  相似文献   

16.

Background

Airway eosinophilia is considered a central event in the pathogenesis of asthma. Eotaxin plays a key role in selective eosinophil accumulation in the airways and, subsequently, their activation and degranulation. The study was undertaken to evaluate eotaxin-1 levels in the exhaled breath condensate (EBC) of asthmatics with different degrees of asthma severity and to establish the possible correlation of these measurements with other recognized parameters of airway inflammation.

Methods

EBC was collected from 46 patients with allergic asthma (14 with steroid-naïve asthma, 16 with ICS-treated, stable asthma, 16 with ICS-treated unstable asthma) and 12 healthy volunteers. Concentrations of eotaxin-1 were measured by ELISA.

Results

In the three groups of asthmatics, eotaxin-1 concentrations in EBC were significantly higher compared with healthy volunteers (steroid-naïve asthma: 9.70 pg/ml ± 1.70, stable ICS-treated asthma: 10.45 ± 2.00, unstable ICS-treated asthma: 17.97 ± 3.60, healthy volunteers: 6.24 ± 0.70). Eotaxin-1 levels were significantly higher in patients with unstable asthma than in the two groups with stable disease. We observed statistically significant correlations between the concentrations of eotaxin-1 in EBC and exhaled nitric oxide (FENO) or serum eosinophil cationic protein (ECP) in the three studied groups of asthmatics. We also discovered a significantly positive correlation between eotaxin-1 in EBC and blood eosinophil count in the groups of patients with unstable asthma and steroid-naïve asthma.

Conclusions

Measurements of eotaxin-1 in the EBC of asthma patients may provide another useful diagnostic tool for detecting and monitoring airway inflammation and disease severity.  相似文献   

17.
Eosinophil recruitment and enhanced production of NO are characteristic features of asthma. However, neither the ability of eosinophils to generate NO-derived oxidants nor their role in nitration of targets during asthma is established. Using gas chromatography-mass spectrometry we demonstrate a 10-fold increase in 3-nitrotyrosine (NO(2)Y) content, a global marker of protein modification by reactive nitrogen species, in proteins recovered from bronchoalveolar lavage of severe asthmatic patients (480 +/- 198 micromol/mol tyrosine; n = 11) compared with nonasthmatic subjects (52.5 +/- 40.7 micromol/mol tyrosine; n = 12). Parallel gas chromatography-mass spectrometry analyses of bronchoalveolar lavage proteins for 3-bromotyrosine (BrY) and 3-chlorotyrosine (ClY), selective markers of eosinophil peroxidase (EPO)- and myeloperoxidase-catalyzed oxidation, respectively, demonstrated a dramatic preferential formation of BrY in asthmatic (1093 +/- 457 micromol BrY/mol tyrosine; 161 +/- 88 micromol ClY/mol tyrosine; n = 11 each) compared with nonasthmatic subjects (13 +/- 14.5 micromol BrY/mol tyrosine; 65 +/- 69 micromol ClY/mol tyrosine; n = 12 each). Bronchial tissue from individuals who died of asthma demonstrated the most intense anti-NO(2)Y immunostaining in epitopes that colocalized with eosinophils. Although eosinophils from normal subjects failed to generate detectable levels of NO, NO(2-), NO(3-), or NO(2)Y, tyrosine nitration was promoted by eosinophils activated either in the presence of physiological levels of NO(2-) or an exogenous NO source. At low, but not high (e.g., >2 microM/min), rates of NO flux, EPO inhibitors and catalase markedly attenuated aromatic nitration. These results identify eosinophils as a major source of oxidants during asthma. They also demonstrate that eosinophils use distinct mechanisms for generating NO-derived oxidants and identify EPO as an enzymatic source of nitrating intermediates in eosinophils.  相似文献   

18.
Numerous in vitro and in vivo studies in both animal models and human asthmatics have implicated platelet-activating factor (PAF) as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of recombinant human PAF-acetylhydrolase (rPAF-AH), which converts PAF to biologically inactive lyso-PAF. In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs with widespread mucus occlusion of the airways and results in bronchial hyperreactivity. The administration of rPAF-AH had a marked effect on late-phase pulmonary inflammation, which included a significant reduction in airway eosinophil infiltration, mucus hypersecretion, and airway hyperreactivity in response to methacholine challenge. These studies demonstrate that elevating plasma levels of PAF-AH through the administration of rPAF-AH is effective in blocking the late-phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that rPAF-AH may have therapeutic effects in patients with allergic airway inflammation.  相似文献   

19.
The elevated S100A4 level has been found in some inflammatory diseases. However, the expression and role of S100A4 in asthma is unknown. The expression of S100A4 in induced sputum and plasma from healthy control and asthmatics were assessed by ELISA. Then an allergen-induced asthma mouse model treatment with anti-S100A4 antibody was used to explore the role of S100A4 in the pathogenesis of asthma. The S100A4 levels in sputum not in plasma in asthmatics were significantly increased than those of healthy controls and were negatively correlated with some lung function parameters and were positively correlated with sputum eosinophilia and lymphocyte. The expression of S100A4 in the lung as well as in BALF were also significantly higher in the asthma mouse model and treatment with anti-S100A4 antibody exhibited reductions in inflammatory cell accumulation, inflammatory mediators, and airway hyper-responsiveness. We further showed that LY294002, a specific inhibitor of PI3K, markedly decreased S100A4 expression in lung and S100A4 secretion in BALF in asthmatic mice. In conclusion, these data demonstrated that S100A4 may be involved in the pathogenesis of airway inflammation in asthma.  相似文献   

20.
Measurement of eosinophilic airway inflammation can assist in the diagnosis of allergic asthma and in the management of exacerbations, however its clinical implementation remains difficult. Galectin-10 has been associated with eosinophilic inflammation and has the potential to be used as a surrogate biomarker. This study aimed to assess the relationship between galectin-10 in sputum with sputum eosinophil counts, the current gold standard of eosinophil inflammation in the lung. Thirty-eight sputum samples were processed for both eosinophil counts by cytospins and semi-quantitative measurements of galectin-10 by western blots. A strong association was observed between galectin-10 levels in sputum and sputum eosinophil measurements, and they accurately determined sputum eosinophilia. The results support the potential for galectin-10 to be used as a surrogate biomarker of eosinophilic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号