首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glycosylation patterns of recombinant therapeutic glycoproteins can be engineered by overexpression of glycosyltransferases in the host cells used for glycoprotein production. Most prior glycosylation engineering experiments have involved constitutive expression of cloned glycosyltransferases. Here we use tetracycline-regulated expression of two glycosyltransferases, N-acetylglucosaminlytransferases III and V (GnTIII and GnTV) to manipulate glycoform biosynthesis in Chinese hamster ovary (CHO) cells and to study the effect of glycosyltransferase overexpression on this host. The amount of GnTIII and GnTV in these cells, and the glycosylation patterns of several cellular glycoproteins, could be controlled simply by manipulating the concentration of tetracycline in the culture medium. Using this system, it was found that overexpression of either GnTIII or GnTV to high levels led to growth inhibition and was toxic to the cells, indicating that this may be a general feature of glycosyltransferase overexpression. This phenomenon has not been reported previously, probably due to the widespread use of constitutive promoters, and should be taken into account when designing vectors for glycosylation engineering. The growth inhibition effect sets an upper limit to the level of glycosyltransferase overexpression, and may thereby also limit the maximum extent of in vivo modification of poorly accessible glycosylation sites. Also, such inhibition implies a bound on constitutive glycosyltransferase expression which can be cloned.  相似文献   

3.
Despite the lack of a proinflammatory response to LPS, CD14-deficient mice clear Gram-negative bacteria (Escherichia coli 0111) at least 10 times more efficiently than normal mice. In this study, we show that this is due to an early and intense recruitment of neutrophils following the injection of Gram-negative bacteria or LPS in CD14-deficient mice; in contrast, neutrophil infiltration is delayed by 24 h in normal mice. Similar results of early LPS-induced PMN infiltration and enhanced clearance of E. coli were seen in Toll-like receptor (TLR) 4-deficient mice. Furthermore, the lipid A moiety of LPS induced early neutrophil infiltration not only in CD14-deficient and TLR-4-deficient mice, but also in normal mice. In conclusion, the lipid A component of LPS stimulates a unique and critical pathway of innate immune responses that is independent of CD14 and TLR4 and results in early neutrophil infiltration and enhanced bacterial clearance.  相似文献   

4.
In an attempt to use the hyperosmotic pressure for improved foreign protein production in recombinant Chinese hamster ovary (rCHO) cells, the response of rCHO cells producing a humanized antibody (SH2-0.32-(Delta)bcl-2 cells) to hyperosmotic pressure was determined in regard to cell growth and death, and antibody production. Further, the feasibility of Bcl-2 overexpression in improving rCHO cell viability under hyperosmotic pressure was also determined by comparing control cells (SH2-0.32-(Delta)bcl-2) with Bcl-2 overexpressing cells (14C6-bcl-2). After 3 days of cultivation in the standard medium (294 mOsm x kg(-1)), the spent medium was exchanged with the fresh media with various osmolalities (294-640 mOsm x kg(-1)). The results obtained show that hyperosmotic pressure inhibited cell growth in a dose-dependent manner, though 14C6-bcl-2 cells were less susceptible to hyperosmotic pressure than SH2-0.32-(Delta)bcl-2 cells. At 522 mOsm x kg(-1), SH2-0.32-(Delta)bcl-2 cells underwent a gradual cell death mainly through apoptosis due to the cytotoxic effect of hyperosmotic pressure. In contrast, Bcl-2 overexpression in 14C6-bcl-2 cells could delay the apoptosis induced by 522 mOsm x kg(-1) by inhibiting caspase-3 activation. Bcl-2 overexpression could also improve the cellular membrane integrity of 14C6-bcl-2 cells. When subjected to hyperosmotic pressure, the specific antibody productivity of SH2-0.32-(Delta)bcl-2 cells and 14C6-bcl-2 cells was increased in a similar extent. As a result, the final antibody concentration achieved in 14C6-bcl-2 cells at 522 mOsm x kg(-1) was 2.5-fold higher than that at 294 mOsm x kg(-1). At 580 mOsm x kg(-1), acute hyperosmotic pressure induced the rapid loss of viability in both SH2-0.32-(Delta)bcl-2 and 14C6-bcl-2 cells through necrosis rather than through apoptosis. Taken together, Bcl-2 overexpression and optimized hyperosmotic pressure could improve the antibody production of rCHO cells.  相似文献   

5.
The activation of phagocytes by lipopolysaccharide (LPS) has been implicated in the pathogenesis of Gram-negative sepsis. Although the interaction between CD14 and LPS is a key event in the signaling cascade, the molecular mechanism by which cellular activation occurs remains obscure. We hypothesized that the main function of CD14 was to bind LPS and transfer it to a second receptor, which then initiates the subsequent signal for cellular activation. Thus, surface binding of LPS to the cell membrane would be the critical step that CD14 carries out. To test this hypothesis, we examined the activity of two other proteins known to bind LPS, lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein. We found that when these normally soluble proteins were expressed in Chinese hamster ovary-K1 fibroblasts as glycosylphosphatidylinositol-anchored proteins, both could substitute for CD14 in initiating LPS signaling. Pharmacological studies with synthetic lipid A analogues demonstrated that these surface expressed LPS-binding proteins had characteristics that were qualitatively identical to membrane CD14. These data support the hypothesis that a receptor distinct from CD14 functions as the actual signal transducer and suggest that surface binding of LPS to the cell membrane is the crucial first step for initiating downstream signaling events.  相似文献   

6.
Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents.  相似文献   

7.
Organolead compounds enter the environment primarily through the combustion of leaded gasoline and industrial discharge. Lead and lead-containing compounds have been shown to induce a broad spectrum of toxic effects, including hematopoietic, renal, neurologic, and carcinogenic effects. In this study, the mutagenic activity of triethyllead acetate (Et3PbAc) was determined by measuring the induction of chromosomal aberrations in Chinese hamster ovary cells. The results indicate that Et3PbAc is very cytotoxic and a potent clastogen. In preliminary cytotoxicity studies used to determine appropriate test concentrations for chromosomal aberration analysis, the LC50 of Et3PbAc was approximately 10 microM in the absence of metabolic activation, and 80 microM in the presence of metabolic activation. The maximal response was greater with metabolic activation than without. However, a much higher dose was required to elicit a significant response in the presence of metabolic activation than in its absence.  相似文献   

8.
Infection of T-lymphocytes and macrophages by human immunodeficiency virus (HIV) is mediated by the binding of the HIV envelope glycoprotein to the cell-surface receptor glycoprotein CD4. A soluble, recombinant CD4 molecule (rCD4), produced by expression of a truncated CD4 gene in Chinese hamster ovary (CHO) cells [Smith et al. (1987) Science 238, 1704-1707], is in clinical trials as a potential therapeutic agent in the treatment of acquired immunodeficiency syndrome (AIDS). In the present study, the structures of the Asn-linked oligosaccharides of soluble rCD4 have been elucidated. The rCD4 molecule has two potential sites for N-glycosylation, Asn-271 and Asn-300. Tryptic glycopeptides containing either of the sites were purified by reversed-phase HPLC, and their oligosaccharides were released enzymatically. The structures of the oligosaccharides were determined by methylation analysis, high-pH anion-exchange chromatography, fast-atom bombardment mass spectrometry, and 1H NMR spectroscopy at 500 MHz. Asn-271 was found to carry diantennary N-acetyllactosamine-type ("complex") oligosaccharides, of which 8% were asialo, 55% were monosialyl, and 37% were disialyl. Approximately 18% of these structures contained fucose alpha(1-->6) linked to the reducing GlcNAc residue. Two different hybrid structures were found to account for 34% of the oligosaccharides attached to Asn-300. The remainder of the oligosaccharides attached to Asn-300 were diantennary N-acetyllactosamine-type, of which 10% were asialo, 61% were monosialyl, and 29% were disialyl. Approximately 9% of the hybrid structures and 40% of the N-acetyllactosamine structures at Asn-300 were found to contain fucose alpha(1-->6) linked to the innermost GlcNAc residue.  相似文献   

9.
Lipopolysaccharide (LPS) induces inflammatory activation through TLR4 (toll-like receptor-4)/MD-2 (myeloid differentiation-2)/CD14 (cluster of differentiation-14) complex. Although optimal LPS signaling is required to activate our innate immune systems against gram-negative bacterium, excessive amount of LPS signaling develops a detrimental inflammatory response in gram-negative bacterial infections. Downregulation of surface TLR4 expression is one of the critical mechanisms that can restrict LPS signaling. Here, we found that membrane-anchored CD14 is required for LPS-induced downregulation of TLR4 and MD-2 in CHO cells. Moreover, pretreatment of the cells with sterol-binding agent filipin reduced LPS-induced TLR4 downregulation, suggesting the involvement of caveolae-mediated endocytosis pathway. Involvement of caveolae in LPS-induced TLR4 endocytosis was further confirmed by immunoprecipitation. Thus, our data indicate that caveolae-dependent endocytosis pathway is involved in LPS-induced TLR4 downregulation and that this is dependent on membrane-anchored CD14 expression.  相似文献   

10.
Cysteine, cysteamine and glutathione all induce sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells when applied to cell cultures at concentrations between 10(-4) and 10(-2) M. Acute exposure of cells th thiol compound for a period of 2--3 h resulted in a unique dose--response relationship in each instance. This consisted of two peak SCE frequencies, one at either extreme of the concentration range. Each peak corresponded to a 2--3-fold increase over the spontaneous level. A chronic exposure of 24 h, in contrast, resulted in a dose--response relationship consisting of a single peak SCE frequency (representing a 4--5-fold increase over the spontaneous level) at a concentration of approx. 4 x 10(-4) M. The effect of Cu2+ ions included in the medium at a concentration of 10(-5) M was to increase the toxicity and, at some concentrations, the SCE levels occurring after either acute or chronic exposure to thiols. Hydrazine and its derivatives, dimethylhydrazine and isonicotinic acid hydrazide (isoniazid), as well as hydrogen peroxide, also induce SCEs in CHO cells. A 2--3-fold increase over the spontaneous level was observed, depending upon the particular treatment protocol applied. SCE yields after 3 h treatment with dimethylhydrazine and isoniazid were increased if Mn2+, but not Cu2+, was included in the tissue culture medium at a concentration of 10(-5) M. SCE yields after a 24-h treatment with dimethylhydrazine in which Mn2+ was present in, and absent from, the medium were similar. Catalase was observed to reduce the SCE levels resulting from treatment with hydrogen peroxide, dimethylhydrazine and isoniazid. The effect of catalase upon SCEs induced by dimethylhydrazine and isoniazid in the presence of Mn2+ was more evident than when Mn2+ was not included in the culture medium. The significance of these results with respect to the possible active chemical species produced and the mutagenic/carcinogenic risk associated with thiol and hydraizine compounds is discussed.  相似文献   

11.
The number of sister-chromatid exchanges (SCEs) per metaphase was determined in Chinese hamster ovary cells after 16 h exposure to methylglyoxal (MG) concentrations ranging from 0.1 to 0.75 mM. MG produced an increase of SCE frequency that proved to be dose-dependent, and to reach a maximum of 2 X baseline at the highest nontoxic concentration (0.5 mM).  相似文献   

12.
DNA synthesis in two mutants of Chinese hamster overy cells, ts 13A and ts 15C, which were temperature sensitive for growth, was found to be shut off rapidly at the nonpermissive temperature. The mutants did not complement each other and the ts lesion was not located on the X chromosome. Both isolates were found to be considerably more sensitive to the alkylating agents, ethylmethanesulfonate (EMS) and methylmethanesulfonate (MMS), as compared to the parental cells, but showed normal sensitivity to UV irradiation. The mutants also showed interesting differences in their response to EMS-induced mutation frequencies at the ouabain-resistant and thioguanine-resistant loci. At high survival (50%) the frequencies of mutations at these genetic loci were markedly low in the ts mutants as compared to the parental cells. In ts+ revertants isolated from the mutants, the ts phenotype and the increased sensitivity to EMS and MMS were affected simultaneously, indicating that both these characteristics resulted from a single genetic lesion.  相似文献   

13.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-alpha (TNF-alpha) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-alpha was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-alpha in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.  相似文献   

14.
Upon nutrient deprivation, Chinese hamster ovary (CHO) cells are subjected to two types of programmed cell death, apoptosis and autophagy. CHO cell engineering, as a means to improve foreign protein production, has focused mainly on anti-apoptosis. In this study, to determine the effect of Akt, which is known to regulate both apoptosis and autophagy, on cell survival and foreign protein production, constitutively active Akt was overexpressed in antibody-producing cells. Compared with the control cells, Akt overexpressing cells showed delayed onset of apoptosis and autophagy during batch culture. The inhibition of apoptosis was demonstrated by reduced amount of cleaved poly(ADP-ribose) polymerase and caspase 3 proteins and less fragmentation of chromosomal DNA. Moreover, under nutrient-limiting conditions, decreased level of autophagosome accumulation was observed in Akt overexpressing cells by the less accumulation of the 16kDa form of LC3-II and autophagic vacuoles. Taken together, the overexpression of constitutively active Akt in CHO cells could delay the onset of both types of programmed cell death during batch culture.  相似文献   

15.
Possible induction of sister-chromatid exchanges by butachlor, paraquat, phorate and monocrotophos was examined in primary rat tracheal epithelial (RTE) and Chinese hamster ovary (CHO) cells. At dose levels that killed less than 50% of the cell population, monocrotophos induced SCEs positively in CHO and RTE cells, while paraquat was positive only in RTE cells. In two trials of the same experiment, paraquat and butachlor in CHO cells, and phorate in either RTE or CHO cells failed to induce a significant number of SCEs at any dose level within the ranges assayed. On the other hand, in RTE cells, butachlor induced a significant number of SCEs at a dose level of 5 micrograms/ml in one trial, but was insignificant in another. The inductions in these assays were, however, dose-dependent. The addition of S9 mixture did not alter the results of SCE induction by these 4 pesticides in CHO cells. RTE cells were more vulnerable to paraquat in cytotoxicity and SCE assays than CHO cells. Cytotoxicities were ranked as butachlor greater than phorate greater than paraquat greater than monocrotophos to CHO cells and paraquat greater than butachlor greater than phorate greater than monocrotophos to RTE cells. Significant cell cycle delays were only found in the treatments with the highest dose levels of butachlor, paraquat and phorate in CHO cells. In addition, this is the first report on SCE induction in RTE cells.  相似文献   

16.
Cycloheximide (CHM) and puromycin (PUR) were used at various concentrations up to maxima of 10 micrograms/ml and 100 micrograms/ml, respectively, which inhibited protein synthesis by 95% without any cytotoxicity. The drugs were added to the cells for a maximum period of 7 h, with various combinations for treatment before, during, and after heating. Maximum protection, i.e., a 10,000-fold increase in survival from 5 X 10(-6) to 5 X 10(-2) after 4 h at 43 degrees C, required both 1-2 h of treatment before heating and 1-2 h of treatment during heating. For treatments at 45.5 degrees C, the protection was less, i.e., a 100-fold increase in survival from 10(-5) to 10(-3). Little or no protection was observed if after treatment, the drug was removed before heating, or if the drug was added at the start of heating and left on for 5 min to 3 h after heating. For both drugs, the amount of protection increased as inhibition of protein synthesis increased. However, the amount of protection from the drugs was the same only at about 95% inhibition; at 60-85% inhibition, CHM afforded more protection than PUR. Therefore, the modes of action of the drugs might be common at high drug concentrations, but different when intermediate concentrations are used.  相似文献   

17.
18.
The clastogenic activities of diepoxybutane and bleomycin were comparatively studied on prematurely condensed interphase chromatin and metaphase chromosomes of Chinese hamster ovary cells. The yield of chromosomal aberrations was distinctly higher in G2-premature chromosome condensation as compared to metaphase. Most notably, the clastogenic activity of bleomycin was visible in premature chromosome condensation after application of much lower final concentrations than necessary for induction of chromosome aberrations in metaphase. In addition, the different mechanisms of action of both clastogens were reflected by the aberration yield in GI and G2 immediately after exposure. While bleomycin induced aberrations throughout all stages of interphase, diepoxybutane did not induce aberrations in GI or G2. Though certainly not a routine system for genotoxicity testing, premature chromosome condensation analyses provide a powerful opportunity to demonstrate relationships between DNA damage and repair, and the production of chromosomal changes at the site of their formation.Abbreviations BM bleomycin - BrdUrd bromodeoxyuridine - CHO Chinese hamster ovary - DEB diepoxybutane - DMSO dimethylsulfoxide - FCS fetal calf serum - PCC premature chromosome condensation, prematurely condensed chromosomes - PEG polyethylene glycol  相似文献   

19.
We have transferred DNa to Chinese hamster ovary (CHO) cells by DNA-mediated transformation. CHO tk- cells were transformed with the clones gene for herpes simplex virus thymidine kinase (HSV-tk) and were found to have a 50-fold lower frequency of transformation than mouse Ltk- cells at the same DNA dosage. By altering the amount of tk gene and carrier DNA present, frequencies of up to 5 x 10(-5) were obtained. CHO HSV-tk+ transformants were very stable, and in several clones the HSV-tk gene copies integrated in higher-molecular-weight DNA. These cells also exhibited cotransformation for unselected markers. CHO lines were also transformed at a frequency of 10(-4) with the bacterial gene Ecogpt in a SV40-pBR322 vector. CHO tk-cells could be transformed at a frequency of 10(-7) with cellular DNA isolated from CHO tk+ cells. CHO cells offer a well-defined genetic system within which to transfer either cloned or whole cellular DNAs.  相似文献   

20.
Overproduction of inflammatory mediators by macrophages in response to Gram-negative LPS has been implicated in septic shock. Recent reports indicate that three membrane-associated proteins, CD14, CD11b/CD18, and Toll-like receptor (TLR) 4, may serve as LPS recognition and/or signaling receptors in murine macrophages. Therefore, the relative contribution of these proteins in the induction of cyclooxygenase 2 (COX-2), IL-12 p35, IL-12 p40, TNF-alpha, IFN-inducible protein (IP)-10, and IFN consensus sequence binding protein (ICSBP) genes in response to LPS or the LPS-mimetic, Taxol, was examined using macrophages derived from mice deficient for these membrane-associated proteins. The panel of genes selected reflects diverse macrophage effector functions that contribute to the pathogenesis of septic shock. Induction of the entire panel of genes in response to low concentrations of LPS or Taxol requires the participation of both CD14 and TLR4, whereas high concentrations of LPS or Taxol elicit the expression of a subset of LPS-inducible genes in the absence of CD14. In contrast, for optimal induction of COX-2, IL-12 p35, and IL-12 p40 genes by low concentrations of LPS or by all concentrations of Taxol, CD11b/CD18 was also required. Mitigated induction of COX-2, IL-12 p35, and IL-12 p40 gene expression by CD11b/CD18-deficient macrophages correlated with a marked inhibition of NF-kappa B nuclear translocation and mitogen-activated protein kinase (MAPK) activation in response to Taxol and of NF-kappa B nuclear translocation in response to LPS. These findings suggest that for expression of a full repertoire of LPS-/Taxol-inducible genes, CD14, TLR4, and CD11b/CD18 must be coordinately engaged to deliver optimal signaling to the macrophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号