首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although single-strand breaks (SSBs) occur frequently, the cellular responses and repair of SSB are not well understood. To address this, we established mammalian cell lines expressing Neurospora crassa UV damage endonuclease (UVDE), which introduces a SSB with a 3'-OH immediately 5' to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts and initiates an alternative excision repair process. Xeroderma pigmentosum group A cells expressing UVDE show UV resistance of almost the wild-type level. In these cells SSBs are produced upon UV irradiation and then efficiently repaired. The repair patch size is about seven nucleotides, and repair synthesis is decreased to 30% by aphidicolin, suggesting the involvement of a DNA polymerase delta/epsilon-dependent long-patch repair. Immediately after UV irradiation, cellular proteins are poly(ADP-ribosyl)ated. The UV resistance of the cells is decreased in the presence of 3-aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase. Expression of UVDE in XRCC1-defective EM9, a Chinese hamster ovary cell line, greatly sensitizes the host cells to UV, and addition of 3-aminobenzamide results in almost no further sensitization of the cells to UV. Thus, we show that XRCC1 and PARP are involved in the same pathway for the repair of SSBs.  相似文献   

2.
Base excision repair (BER), a major pathway for the removal of simple lesions in DNA, requires the co-ordinated action of several repair and ancillary proteins, the impairment of which can lead to genetic instability. We here address the role of poly(ADP-ribose) polymerase-1 (PARP-1) in BER. Using an in vitro cross-linking assay, we reveal that PARP-1 is always involved in repair of a uracil-containing oligonucleotide and that it binds to the damaged DNA during the early stages of repair. Inhibition of PARP-1 poly(ADP-ribosyl)ation by 3-aminobenzamide blocks dissociation of PARP-1 from damaged DNA and prevents further repair. We find that excessive poly(ADP-ribosyl)ation occurs when repair intermediates containing single-strand breaks are in excess of the repair capacity of the cell extract, suggesting that repeated binding of PARP-1 to the nicked DNA occurs. We also find increased sensitivity of repair intermediates to nuclease cleavage in PARP-deficient mouse fibroblasts and after depletion of PARP-1 from HeLa whole cell extracts. Our data support the model in which PARP-1 binding to DNA single-strand breaks or repair intermediates plays a protective role when repair is limited.  相似文献   

3.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

4.
The purpose of this study was to investigate a possible involvement of poly(ADP-ribosyl)ation reactions in hyperthermic cell killing and hyperthermic DNA strand-break induction and repair in HeLa S3 cells. The inhibitors of poly(ADP-ribose) polymerase, 3-aminobenzamide (3AB) and 4-aminobenzamide (4AB), were used as tools in this study. Both inhibitors could sensitize the cells for hyperthermic cell killing equally well, although 3AB is known to be a more effective enzyme inhibitor. The heat sensitization at the level of cell killing could be reversed when the compounds were still present during a 4-h postincubation at 37 degrees C. More heat-induced DNA strand breaks were formed in the presence of 3AB and 4AB. Repair of strand breaks was inhibited during the postincubation at 37 degrees C. Thus the effect of 3AB and 4AB on DNA strand-break repair was different from the cited effect on cell survival. It is concluded that the sensitizing effect of 3AB and 4AB on hyperthermic cell killing is not caused by inhibition of poly(ADP-ribose) polymerase and is also not related to repair of DNA strand breaks.  相似文献   

5.
It is confirmed that inhibitors of DNA repair caffeine and 3-aminobenzamide decrease the survival of gamma-irradiated HeLa cells. It is shown that the decreased survival of irradiated cells is reversed when Escherichia coli RecA protein is introduced into cell nucleases with the aid of liposomes. This effect is more expressed in caffeine-treated (before or after irradiation) than in 3-aminobenzamide-treated (before irradiation) cells. It is suggested that E. coli 38 kD RecA protein may compensate the function of HeLa RecA-like protein, inhibited by DNA repair inhibitors, which is necessary for the repair of single-strand breaks and double-strand breaks of DNA.  相似文献   

6.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

7.
When HeLa cells are irradiated with UV and treated with the DNA synthesis inhibitors hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), DNA strand breaks accumulate at sites where excision repair of DNA damage has been inhibited after the incision step. This break accumulation occurs in mitotic, G1 and S phase cells. But UV-induced repair synthesis of DNA, as measured by [3H]thymidine incorporation into unreplicated DNA, is not inhibited by HU and ara C in G1 or S phase cells, even though replicative synthesis is virtually abolished. Repair and replication must therefore utilise different DNA precursor pools, or different DNA synthetic systems; and the action of Hu and ara C in causing strand break accumulation may occur at the ligation step of excision repair.  相似文献   

8.
We have studied the effect of H2O2 and O2- produced by xanthine and xanthine oxidase on NAD catabolism, poly(ADP-ribose) synthesis, and production of DNA single-strand breaks in C3H10T1/2 cells. The results show a correlation between the induction of DNA single-strand breaks, the decrease of NAD pool, and the accumulation of polymer. New techniques, based on affinity chromatography and reversed-phase high pressure liquid chromatography, have allowed an accurate determination of polymer contents and showed a 20-fold stimulation of polymer biosynthesis induced by active oxygen species. Inhibition experiments performed with 3-aminobenzamide have shown that the decrease in NAD levels after exposure of cells to active oxygen species was caused by stimulation of poly(ADP-ribosyl)ation and of another cellular process.  相似文献   

9.
Summary Some aspects of DNA repair in several radiation-resistant and radiation-sensitive strains of Dictyostelium discoideum were investigated by using alkaline sucrose gradients to analyze for the production and resealing of single-strand breaks following irradiation with 254 nm UV. All radiation-resistant strains and all mutants assayed that are sensitive to both UV and 60Co gamma rays produced singlestrand breaks in their nuclear DNA after a UV fluence of 15 J/m2. Mutants at the radC locus which are sensitive to UV but as resistant as their parental strains to 60Co gamma rays produced many fewer single-strand breaks in their DNA after irradiation with UV. Thus, the radC mutations alter a repair pathway specific for UV-induced DNA damage and presumably affect the activity of a UV-damage-specific endonuclease involved in excision repair. All radiation-resistant strains and all of our mutants sensitive to gamma rays rejoined much of their DNA during a three-hour post-UV-irradiation incubation, suggesting that these strains have at least a partially intact excision repair system.Abbreviations used UV ultraviolet light - PBS phosphate buffered saline - cpm counts per minute  相似文献   

10.
Recent findings concerning the presumed existence of single-strand breaks (SSB) in quiescent human peripheral blood lymphocytes (PBL) are discussed in relation to the role of poly(ADP-ribosyl)ation in DNA strand break metabolism. It is argued that the activation of poly(ADP-ribose)polymerase (ADPRP) by a DNA-damaging agent is not indicative of an obligatory role of poly(ADP-ribosyl)ation in DNA repair. From this it follows that SSB induced by different strand-breaking agents might be removed by either ADPRP-dependent or ADPRP-independent DNA repair pathways.  相似文献   

11.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

12.
Some responses of the cellular slime mold Dictyostelium discoideum to ultraviolet light (UV) irradiation were investigated by analyzing two aspects of deoxyribonucleic acid (DNA) excision repair in the vegetative cells: (i) the fate of thymine-containing dimers and (ii) the production and rejoining of single-strand breaks. Experiments were done with the parental, radiation-resistant NC-4 strain and with the radiation-sensitive gammas-13 strain. The majority (greater than 85%) of the thymine-containing dimers produced in both strains by an energy fluence of 100/Jm2 were removed from the acid-insoluble DNA fraction within the first 3 to 4 h of reincubation in the dark. Moreover, as measured by alkaline sucrose gradients, single-strand breaks appeared in the DNA of both NC-4 and gammas-13 irradiated cells very rapidly and at low temperatures. This was presumed to be a result of the incision (nicking) step of excision repair as performed by UV-specific endonuclease(s). In NC-4 the time required for dimer excision correlated with the sealing of breaks as well as with the UV-induced division delays. In gammas-13 the single-strand breaks were closed at a slower rate than in NC-4. However, this was not accompanied by more extensive division delays.  相似文献   

13.
Poly(ADP-ribose) polymerase-1 (PARP-1), nuclear protein of higher eukaryotes, specifically detects strand breaks in DNA. When bound to DNA strand breaks, PARP-1 is activated and catalyzes synthesis of poly(ADP-ribose) covalently attached to the row of nuclear proteins, with the main acceptor being PARP-1 itself. This protein participates in a majority of DNA dependent processes: repair, recombination; replication: cell death: apoptosis and necrosis. Poly(ADP-ribosyl)ation of proteins is considered as mechanism, which signals about DNA damage and modulate protein functioning in response to genotoxic impact. The main emphasis is made on the roles of PARP-1 and poly(ADP-ribosyl)ation in base excision repair (BER), the process, which provides repair of DNA breaks. The main proposed functions of PARP-1 in this process are: factor initiating assemblage of protein complex of BER; temporary protection of DNA ends; modulation of chromatin structure via poly(ADP-ribosyl)ation of histones; signaling function in detection of the levels of DNA damage in cell.  相似文献   

14.
15.
16.
端粒是位于真核细胞染色体末端的DNA-蛋白质复合体,在维持染色体稳定上起着重要的作用,并且与细胞的衰老和凋亡有着密切的关系.在各种DNA损伤中,单链断裂(single-strand breaks, SSBs)是最常见的类型之一,既可直接通过内源活性氧或离子化辐射产生,也可间接地在DNA代谢或碱基切除修复期间产生.已知多聚(ADP-核糖)聚合酶[poly(ADPribose) polymerase, PARP]在SSBs修复中起着极为重要的作用.本实验观察了PARP抑制剂3-氨基苯酰胺(3-aminobenzamide, 3-AB)对氧化应激诱导的HeLa细胞端粒DNA链断裂重连接的效应以及对过氧化氢(H2O2)抑制HeLa细胞增殖的影响.结果表明3-AB能够显著地抑制氧化应激诱导的HeLa细胞端粒DNA链断裂后的重连接作用,并能增强H2O2对HeLa细胞增殖的抑制作用,提示PARP参与了端粒DNA链断裂损伤的修复过程.  相似文献   

17.
DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by reactive oxygen species and during DNA metabolism, but the analysis of cellular responses to SSB remains difficult due to the lack of an experimental method to produce SSB alone in cells. By using human cells expressing a foreign UV damage endonuclease (UVDE) and irradiating the cells with UV through tiny pores in membrane filters, we created SSB in restricted areas in the nucleus by the immediate action of UVDE on UV-induced DNA lesions. Cellular responses to the SSB were characterized by using antibodies and fluorescence microscopy. Upon UV irradiation, poly(ADP-ribose) synthesis occurred immediately in the irradiated area. Simultaneously, but dependent on poly(ADP-ribosyl)ation, XRCC1 was translocated from throughout the nucleus, including nucleoli, to the SSB. The BRCT1 domain of XRCC1 protein was indispensable for its poly(ADP-ribose)-dependent recruitment to the SSB. Proliferating cell nuclear antigen and the p150 subunit of chromatin assembly factor 1 also accumulated at the SSB in a detergent-resistant form, which was significantly reduced by inhibition of poly(ADP-ribose) synthesis. Our results show the importance of poly(ADP-ribosyl)ation in sequential cellular responses to SSB.  相似文献   

18.
The kinetics of UV- (254 nm) irradiation-induced DNA single-strand breaks (SSBs), generated during the excision repair of UV-induced DNA damage, in leukemic lymphocytes and in normal blood mononuclear cells (MNCs) were studied using the alkaline comet assay. The cells were isolated by density gradient centrifugation from peripheral blood of patients with chronic lymphocytic leukemia (CLL) and from healthy study subjects. The cytotoxicity of UV irradiation was determined in vitro in peripheral blood mononuclear lymphocytes from 36 CLL patients and from eight healthy donors using the incorporation of radioactive leucine in 4-day cultures. A remarkable difference in excision repair capability was observed between normal and leukemic lymphocytes. In contrast to normal lymphocytes, there was always a subpopulation of CLL cells that did not complete the repair of UV-induced DNA damage during the 24-h repair period. Furthermore, differences were also recorded between UV-sensitive and UV-resistant CLL cases. The differences in DNA migration between the maximum increase (59-77 microm) and that at 24 h after irradiation (21-66 microm) was statistically significant in two of three patients exhibiting UV-resistance. Correspondingly, only in one of three patients exhibiting UV-sensitivity was the difference in DNA migration statistically significant (maximum increase: 44-107 microm, vs. 24 h after: 42-100 microm). Our results confirm an abnormal pattern of the CLL cell response to UV irradiation. Furthermore, we identified defective processing of UV-induced DNA damage in CLL versus normal lymphocytes, particularly in UV-sensitive cases.  相似文献   

19.
Oxidative stress is an inevitable process in the nucleus, especially in antitumor chemotherapy, and adaptation by defense mechanisms seems to be one element in the development of long-term resistance to many chemotherapeutic drugs. In this study, a potential chromatin repair mechanism during oxidative stress was investigated in HT22 cells. The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified histone proteins in the nucleus. Poly(ADP-ribosyl)ation reactions also play an important role in DNA repair as a consequence of oxidative damage and single-strand breaks. Such a reaction may occur also with the 20S proteasome—with a known increase in enzymatic activity—and also with histones—reducing their proteolytic susceptibility as shown for the first time here. After hydrogen peroxide treatment of HT22 cells, degradation of the model peptide substrate suc-LLVY-MCA and degradation of oxidized histones by nuclear proteasome increased. During the removal of protein carbonyls, single-strand breaks and 8-hydroxy-2′-deoxyguanosine, proteasome, and poly(ADP-ribose) polymerase-1 enzymes were shown to play tightly interacting roles. Our results following the repair of oxidative damage show the proteolytic activation of proteasome concerning poly(ADP-ribosyl)ation together with a decline in poly(ADP-ribosyl)ation of oxidized histones, leading to a selective recognition of oxidatively modified histones.  相似文献   

20.
Specific inhibitors of poly(ADP-ribose)polymerase-3-aminobenzamide and 3-metoxybenzamide (6, 12 mM) have been shown to: 1) reduce survival of X-irradiated CHO K1 cells to a slight degree; 2) increase S- and particularly G2-delays in X-irradiated cells, while progressing through the cell cycle as analysed by the DNA flow cytofluorimetry; 3) reduce effectiveness of DNA single-strand breaks repair. The above data suggest a definite role of ADP ribosylation in the cell repair activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号