首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Nature methods》2005,2(8):629-630
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.  相似文献   

2.
The susceptibility of microsatellite DNA sequences to insertions and deletions in vivo makes them useful for genetic mapping and for detecting genomic instability in tumors. An in vitro manifestation of this instability is the production of undesirable frameshift products during amplification of (dC-dA)n x (dG-dT)n microsatellites in the polymerase chain reaction (PCR). These products differ from the primary product by multiples of 2 nucleotides. We have tested the hypothesis that factors known to affect the fidelity of DNA synthesis may affect (dC-dA)n x (dG-dT)n frameshifting during the PCR. Neither modifications of pH, dNTP concentration, and Mg++ concentration using Amplitaq, nor the use of thermophilic DNA polymerases including UITma, Pfu, Vent and Deep Vent significantly decreased the production of frameshift products during amplification. However, 3'-->5' exonuclease activity in thermophilic DNA polymerases inhibited the accumulation of PCR products containing non-templated 3' terminal nucleotides. Most interestingly, extension temperatures of 37 degrees C during amplification using the thermolabile DNA polymerases Sequenase 1.0, Sequenase 2.0, and 3'-->5' exonuclease-deficient Klenow fragment greatly decreased the production of frameshift products. This method can improve the resolution of heterozygous or mutant (dC-dA)n x (dG-dT)n alleles differing in size by one or two repeat units.  相似文献   

3.
We developed an efficient method of isothermally amplifying DNA termed ICAN, Isothermal and Chimeric primer-initiated Amplification of Nucleic acids. This method allows the amplification of target DNA under isothermal conditions at around 55 degrees C using only a pair of 5'-DNA-RNA-3' chimeric primers, a thermostable RNaseH and a DNA polymerase with strong strand-displacing activity. ICAN is capable of amplifying DNA at least several times greater than the amount produced with PCR by increasing primer concentration. This method would be applicable for on-site DNA detection including gene diagnosis, and would also be suitable for 'real time' detection when combined with a cycling probe.  相似文献   

4.
We describe a method for linear isothermal DNA amplification using nicking endonuclease-mediated strand displacement by a DNA polymerase. The nicking of one strand of a DNA target by the endonuclease produces a primer for the polymerase to initiate synthesis. As the polymerization proceeds, the downstream strand is displaced into a single-stranded form while the nicking site is also regenerated. The combined continuous repetitive action of nicking by the endonuclease and strand-displacement synthesis by the polymerase results in linear amplification of one strand of the DNA molecule. We demonstrate that DNA templates up to 5000 nucleotides can be linearly amplified using a nicking endonuclease with 7-bp recognition sequence and Sequenase version 2.0 in the presence of single-stranded DNA binding proteins. We also show that a mixture of three templates of 500, 1000, and 5000 nucleotides in length is linearly amplified with the original molar ratios of the templates preserved. Moreover, we demonstrate that a complex library of hydrodynamically sheared genomic DNA from bacteriophage lambda can be amplified linearly.  相似文献   

5.
Summary
A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.  相似文献   

6.
Lin TC  Wang CX  Joyce CM  Konigsberg WH 《Biochemistry》2001,40(30):8749-8755
We have determined rates for the excision of nucleotides from the 3' termini of chimeric DNA-RNA oligonucleotides using the Klenow fragment (KF) and two other DNA polymerases, from phages T4 and T7. For these studies, we synthesized DNA-RNA chimeric oligonucleotides with RNA residues in defined positions. When a ribonucleotide residue was placed at the 3' terminus, all three DNA polymerases removed it at the same rate as they did for substrates composed solely of deoxynucleotide residues. There was a decrease in the excision rate, however, when a ribonucleotide residue was located at the second or third position from the 3' terminus. When both the second and third positions were occupied by ribonucleotide residues, the excision rate for the 3' terminal nucleotide was reduced even further and was almost identical to the rate observed when the DNA polymerases encountered single-stranded RNA. The magnitude of the effect of ribonucleotide residues on the excision rate was lower when Mn(2+) replaced Mg(2+) as the essential divalent cation. Two KF mutations, Y423A and N420A, selectively affected the excision rates for the chimeric substrates. Specifically, Y423A totally abolished the rate reduction when there was a single ribonucleotide residue immediately preceding the 3' terminus, whereas N420A diminished, but did not eliminate, the rate reduction relative to that of wild-type KF when the single ribonucleotide residue occupied either the second or third position from the 3' terminus. These results are consistent with the structure of a KF-ss DNA complex from which it can be deduced, by modeling, that a 2' OH group on the second sugar from the 3' terminus would sterically clash with the Tyr 423 side chain, and a 2' OH group on the third sugar would clash with the side chain of Asn 420. The corresponding mutations in T4 DNA polymerase did not affect the rate of hydrolysis of the chimeric oligonucleotides. Thus, there appears to be a major difference in the kinetic behavior of KF and T4 DNA polymerase with respect to the exonuclease reaction. These results are discussed with respect to their possible biological relevance to DNA replication.  相似文献   

7.
Isothermal and Chimeric primer-initiated Amplification of Nucleic acids (ICAN) allows the amplification of target DNA under isothermal conditions at around 55 degrees C using only a pair of 5'-DNA-RNA-3' chimeric primers, thermostable RNaseH and a DNA polymerase with strand-displacing activity (H. Mukai et al. J. Biochemistry, in the preceding paper in this issue). Here we elucidated the mechanism of ICAN by analysing the nicking site of RNaseH, behaviour of chimeric primers and extension products. We found that the ICAN reaction was composed of two unique mechanisms, multi-priming and template-switching, that were responsible for the highly efficient amplifying capability of ICAN. The simultaneous occurrence of two types of reactions, one based on multi-priming and the other based on template-switching, is likely to drive the DNA amplification in ICAN.  相似文献   

8.
Different chemical methods used to attach oligonucleotides by their 5′-end on a glass surface were tested in the framework of solid phase PCR where surface-bound instead of freely-diffusing primers are used to amplify DNA. Each method was first evaluated for its capacity to provide a high surface coverage of oligonucleotides essentially attached via a 5′-specific linkage that satisfyingly withstands PCR conditions and leaves the 3′-ends available for DNA polymerase activity. The best results were obtained with 5′-thiol-modified oligonucleotides attached to amino-silanised glass slides using a heterobifunctional cross-linker reagent. It was then demonstrated that the primers bound to the glass surface using the optimal chemistry can be involved in attaching and amplifying DNA molecules present in the reaction mix in the absence of freely-diffusing primers. Two distinct amplification processes called interfacial and surface amplification have been observed and characterised. The newly synthesised DNA can be detected and quantified by radioactive and fluorescent hybridisation assays. These new surface amplification processes are seen as an interesting approach for attachment of DNA molecules by their 5′-end on a solid support and can be used as an alternative route for producing DNA chips for genomic studies.  相似文献   

9.
Recombination during the PCR amplification of DNA templates can be a serious problem for those seeking to genotype heterogeneous populations, yet a boon to those seeking to enhance variation during in vitro evolution. Here, the extent to which PCR generates chimeric full-length products was estimated using a powerful restriction fragment-length polymorphism (RFLP) assay involving the use of fluorescently labeled PCR primers. Three different RNA-encoding DNA templates were assayed: (i) one for a group I ribozyme, (ii) one for a 16S ribosomal RNA (rRNA), and (iii) one for a messenger RNA (mRNA). In all cases, the observed frequency of chimeric PCR products exceeded 20%, and longer templates appear to produce more chimeric products. Although two of these templates have the potential to form secondary structures during the PCR, this tendency does not seem to heighten recombination frequency. These results corroborate previous studies that show that the production of chimeras can be best attenuated to a certain extent by varying the extension times in PCR.  相似文献   

10.
Under certain conditions, polymerase chain reaction (PCR) can be used to differentially amplify one allele over another. To characterize the phenomenon, we have made a series of PCR primers and determined whether differential amplification could be detected after agarose gel electrophoresis. Two allele pairs were examined; one pair represents a transversion and one pair represents a transition. The following conclusions emerge: (i) when the 3' or the 3' penultimate base of the oligonucleotide mismatched an allele, no amplification product could be detected; (ii) when the mismatches were 3 and 4 bases from the 3' end of the primer, differential amplification was still observed, but only at certain concentrations of magnesium chloride; (iii) the mismatched allele can be detected in the presence of a 40-fold excess of the matched allele; (iv) primers as short as 13 nucleotides were effective; and (v) the specificity of the amplification could be overwhelmed by greatly increasing the concentration of target DNA.  相似文献   

11.
Bacteriophage PRD1 replicates its DNA by means of a protein-primed replication mechanism. Using single-stranded oligonucleotide templates carrying the sequence corresponding to the 25 first bases of the 3' end of PRD1 DNA, and Mg2+ as the activating metal ion of the phage DNA polymerase, we show that the fourth base from the 3' end of the template directs, by base complementarity, the dNMP to be linked to the phage terminal protein (TP) in the initiation reaction. This result suggests that phage PRD1 maintains its 3' end DNA sequences via a sliding-back mechanism. The single-stranded DNA templates could not be replicated by the PRD1 DNA polymerase, much in contrast to the natural TP-DNA. Nevertheless, the analysis of the transition products obtained with TP-DNA and origin-containing oligonucleotides suggests that sliding-back occurs stepwise, the fourth base being the directing position during the entire process.  相似文献   

12.
A thermostable DNA polymerase which possesses an associated 3'-to-5' exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10% of the number of mutations obtained from similar amplifications performed with Taq DNA polymerase. The PCR fidelity assay is based on the amplification and cloning of lacI, lacO and lacZ alpha gene sequences (lacIOZ alpha) using either Pfu or Taq DNA polymerase. Certain mutations within the lacI gene inactivate the Lac repressor protein and permit the expression of beta Gal. When plated on a chromogenic substrate, these LacI- mutants exhibit a blue-plaque phenotype. These studies demonstrate that the error rate per nucleotide induced in the 182 known detectable sites of the lacI gene was 1.6 x 10(-6) for Pfu DNA polymerase, a greater than tenfold improvement over the 2.0 x 10(-5) error rate for Taq DNA polymerase, after approx. 10(5)-fold amplification.  相似文献   

13.
The PCR primers used for cloning of evolutionary conserved genes or homologous DNA sequences are usually guessmer oligonucleotides. We introduce a simple way using Pfu polymerase to overcome possible PCR amplification failure because of 3'-end mismatches of guessed primers with the target DNA.  相似文献   

14.
Recent development of the long PCR technology has provided an invaluable tool in many areas of molecular biology. However, long PCR amplification fails whenever the DNA template is imperfectly preserved. We report that Escherichia coli exonuclease III, a major repair enzyme in bacteria, strikingly improves the long PCR amplification of damaged DNA templates. Escherichia coli exonuclease III permitted or improved long PCR amplification with DNA samples submitted to different in vitro treatments known to induce DNA strand breaks and/or apurinic/apyrimidinic (AP) sites, including high temperature (99°C), depurination at low pH and near-UV radiation. Exonuclease III also permitted or improved amplification with DNA samples that had been isolated several years ago by the phenol/chloroform method. Amelioration of long PCR amplification was achieved for PCR products ranging in size from 5 to 15.4 kb and with DNA target sequences located either within mitochondrial DNA or the nuclear genome. Exonuclease III increased the amplification of damaged templates using either rTth DNA polymerase alone or rTth plus Vent DNA polymerases or Taq plus Pwo DNA polymerases. However, exonuclease III could not improve PCR amplification from extensively damaged DNA samples. In conclusion, supplementation of long PCR mixes with E.coli exonuclease III may represent a major technical advance whenever DNA samples have been partly damaged during isolation or subsequent storage.  相似文献   

15.
Liu Q  Sommer SS 《BioTechniques》2000,29(5):1072-6, 1078, 1080 passim
To measure mutation load or to detect minimal residual disease, a robust method for identifying one mutant allele in the range of 10(6)-10(9) wild-type alleles would be advantageous. Herein, we present evidence that pyrophosphorolysis-activated polymerization (PAP) has the potential to provide a highly specific and robust method of allele-specific amplification if DNA polymerases with higher pyrophosphorolysis activity can be found or engineered. In PAP, pyrophosphorolysis and polymerization by DNA polymerase are coupled serially by utilizing a pyrophosphorolysis-activatable oligonucleotide (P*). P*, which is an allele-specific oligonucleotide with a dideoxynucleotide at the 3' terminus, can be activated by pyrophosphorolysis to remove the 3' terminal dideoxynucleotide in the presence of pyrophosphate (PPi) and the complementary strand of the allelic template; then the activated P* can be extended by DNA polymerization. Specificity results from both pyrophosphorolysis and polymerization because significant nonspecific amplification requires the combination of mismatch pyrophosphorolysis and misincorporation by the DNA polymerase, which is an extremely rare event. Proof of principle has been achieved with a polymorphic site within the human D1 dopamine receptor gene. The effects of the dideoxyoligonucleotide sequences, DNA polymerases, PPi concentrations, allele-specific templates, pH and dNTP concentrations were examined.  相似文献   

16.
D Y Wu  R B Wallace 《Genomics》1989,4(4):560-569
A novel DNA sequence detection method that utilizes the ligation of oligonucleotide pairs that are complementary to adjacent sites on appropriate DNA templates is described. The product is increased by either linear or exponential amplification using sequential rounds of template-dependent ligation. In the case of linear amplification, a single pair of oligonucleotides is ligated, the reaction is heated to dissociate the ligation product, and an additional round of ligation is performed. After n rounds there is a (1 + x) X n-fold amplification of product, where x is the efficiency of the ligation reaction. Exponential amplification utilizes two pairs of oligonucleotides, one complementary to the upper strand and one to the lower strand of a target sequence. The products of the ligation reaction serve as templates for subsequent rounds of ligation. In this case there is (1 + x)(n-1)-fold amplification of product after n rounds. A single base-pair mismatch between the annealed oligonucleotides and the template prevents ligation, thus allowing the distinction of single base-pair differences between DNA templates. At high template concentrations, the ligation reaction has an efficiency approaching 100%. In this report, we demonstrate the use of the ligation amplification reaction (LAR) to distinguish the normal from the sickle cell allele of the human beta-globin gene. We also report the use of LAR as a detection system for polymerase chain reaction-enriched DNA sequences.  相似文献   

17.
We have prepared several novel phosphoramidites and have synthesised oligonucleotides incorporating them internally. The presence of these residues in an oligonucleotide template presents an impossible barrier to primed synthesis by Taq DNA polymerase. When extended as polymerase chain reaction products, these oligonucleotides no longer serve as templates for the polymerase beyond the insertion sites of the modified intermediates, thereby producing single-stranded tails on amplification products. These tails can then be used for solid phase capture and colorimetric detection of PCR products.  相似文献   

18.
We describe a method to clone and amplify DNA by performing the polymerase chain reaction (PCR) in a thin polyacrylamide film poured on a glass microscope slide. The polyacrylamide matrix retards the diffusion of the linear DNA molecules so that the amplification products remain localized near their respective templates. At the end of the reaction, a number of PCR colonies, or 'polonies', have formed, each one grown from a single template molecule. As many as 5 million clones can be amplified in parallel on a single slide. If an Acrydite modification is included at the 5' end of one of the primers, the amplified DNA will be covalently attached to the polyacrylamide matrix, allowing further enzymatic manipulations to be performed on all clones simultaneously. We describe techniques to make replicas of these polony slides, and high throughput sequencing protocols for this technology. Other applications are also discussed.  相似文献   

19.
In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.  相似文献   

20.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号